A AD-A268 @
1”1 USAISEC A IMIHI’IHIIIWHIIUHIII

US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,
COMMUNICATIONS, AND COMPUTER SCIENCES

s ELECTE D
AUG1 6 1993

C
SAMeDL:

Technical Report Appendix D -
Language Reference Manual

ASQB-GI-92-017

September 1992

PETABUT.CN, STATININT A

ApDpraved ' :ooic reisase
Samrunes {rnuumired ;
g *

—— -

1 93-18744
T S | o\ '\\\i\“‘“\\\\ i \\\ \\\\\“\‘\“‘.\1 ey

AIRMICS
115 O’Keefe Building

Georgia Institute of Technology
Atlanta, GA 30332-0800

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188
Exp. Date: Jun 30, 1986

a. REPORT SECURITY CLASSIFICATION

1b. RESTRIGTIVE MARKINGS

2a. SECURI i$ CLASSIEICA'ION AUTHORITY

3. BI§iRlEUi|0NIAVAILABILITY OF REPORT

2b. LASSIFICATION/DOWNGRADING SCHEDUL

N/A

4. PERFORMING ORGANIZATION REPORT NUMBE§(§)

5. MONITORING ORGANIZATION REPORT NUMBER(g)

N/A
[6a. NAME OF PERFORMING ORGANIZATION] 6b. OFFICE SYMBOL |} 7a. NAME OF MONITORING ORGANIZATION
(It applicable)
N/A

[6c. ADDRESS (City. State, and Zip Code)

8b. NAME OF FU
ORGANIZATION

Software Technology Branch, ARL ;

ING/SPONSORIN b. | YMBOL
(iIf applicable)

AMSRL-CI-CD

7b. ADDRESS (Clty, State, and ZIP Code)

N/A
9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)
115 O0’Keefe Bldg.
Georgia Institute of Technology

Atlanta, GA 30332-0800

T T T T ST T T —T
10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO.| NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

SAMeDL: Technical Report Appendix D - Language Reference Manual

12. PERSONAL AUTHOR(S)
MS. Deb Waterman

13a. TYPE OF REPORT
Technical Paper

13b. TIME COVERED
FROM_Apr 91 TO_Sept 92

14. DATE OF REPORT (Year, Month, Day] 15. PAGE COUNT

Sept 15, 1992 125

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

GROUP

FIELD SUBGROUP

ule, SQL

T
18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Ada Database Access, SAMeDL, Ada extension mod-

base Description Language (SAMeDL).

703/614-0209. :

19. ABSTRACT (Continue on reverse If necessary and identify by block number)

This report details the research efforts into the SQL Ada Module Data-
Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD Ada Joint Program Office

[20. DISTRIBUTION/AVAILABILITY OF ABSTRAC
[x] UNCLASSIFIED/UNLIMITED[T] SAME AS RPT. [] DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

[22a. NAME OF RESPONSIBLE INDIVIDUAL
LTC David S. Stevens

H (/nclude Area Code) C. I Y| L
(404) 894-3110 AMSRL-CI-CD

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsoiute.

—SECURITY CLASSIFICATION OF THIS PAGE

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine, Chief Uames D. Gantt, Ph.D.
Computer and Information Director 7 o
Systems Division AIRMICS D12 QUALITY INGPLITED
L_ACCL';IO" For /
NTIS CRA&I)
OTIC TAB 0
Uennoinceg G

Justitication

3’%&;_?_&5& 50|
Dist-sbution ¢

Avmmbmty Codes

. lvm and | of
Ot Speciat

WL

SAMeDL.TR.10.15 Sep 92

APPENDIX D

SAMeDL Language Reference Manual

SAMeDL Language Reference Manual

Intermetrics, Inc.

Document IR-VA-011-1
Date 07-July-1992

Published by
Intermetrics, Inc.
733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
undei tiie clause at DFARS 252.227-7013 (Oct. 1988).

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Table of Contents

Introduction ... 1
Ll SCOPC ettt cecertecsneesstnsnnassessesesessssssasessesssnssossssnsesssnsnasesan 1
1.2 INOLAHON ...cirieceerrrenrienraesteessee e eesseesaeessnsssasssessrsssssesssossssssonnnensesessnennes 1
1.3 Forward ReferencCes..........iuueeuevemeeiicnieeereieeeeeeeceeeseesaseesecesnseceresnees 2
1.4 REFEIEINCES ...ueeeirieieceircnieciiecseesstesssaeesssessssanssssnsessesssasesnnsssssssensesssnsnesen 2
1.5 Design Goals And Language Summaryccccoeeeeeerenenrenvnnrereennnne. 3
1.5.1 Design GOalscoveeeeeverenrernerseensernssesseseressssassessesessesssessessans 3

1.5.2 Language Summary...........ccceeeceereeieseeneessernesensesssseserssssensenes 3

1:5.2.1 OVEIVIEW ..ot eeseevesaee st ssesesaesesosesnssaes 3

1.5.2.2 Compilation Unitscccccerreeeeerennereneerecrrereeenerenen. 4

1.5.2.3 Modules......uoeneeeeerrecneeeenieieeeereieetee s e eeseeseesssaene 4

1.5.2.4 Procedures and CUISOLSooueevemeeeneererveeeseeesecneenanees 4

1.5.2.5 Domain and Base Domain Declarations 5

1.5.2.6 Other Declarations............cceceeeeeeveeerveeseeeseessevessvecnens 5

1.5.2.7 Value Expressions and Typing.........ccccceceeeeerreeenerrnaee 5

1.5.2.8 Standard Post Processing............c.cocecereeeeveeusrereceneennes 5

1.5.2.9 EXIENSIONSeeeereeeereeieeieeerienseesssesneesssesseessessnsessnene 5

1.5.2.10 Default Values in Grammarccooeeeeeeeeeeeevverenenne 6

Lexical Elements 7
2.1 CRATACIET SEL ...ceeerereeereeeicrteneesssnessesssssseosssssesessssssesssasnssessessanessanennses 7
2.2 Lexical Elements, Separators, And Delimitersccccecereeeeerrceenrrennes 7
2.3 JACNEEIETS. .ccovveereereenrnrereeeerrrseeeesseesesssssesseessressesessessasersossasossessssnnses 8
2.4 Literals And Data Classesuu...... vreeeeessrsaeesssnssessssnrssessrasesesssrresens 8
2.5 COMUMENLSccceeeereenrecnneesesssnerssesssesssssesessnsonsessssesssonaesessennsessnssssessans 9
2.6 RESEIVEA WOTAScc.veeneereerreeerecreenriececeieseeesenessaeessesneeneesseessasonsenne 10
Common Elements 11
3.1 Compilation UNILSc.ccuereeeereeercerenresseresneressassessssssssssssessesesessenseseeses 11
3.2 CONLEXL ClAUSESeeeeneeerrecrenreneseeseesnsesseesasssssessssssseesssssssesssemsesssassnns 11
33 Table Names and the From Clause..........ccccceceeeeveurreeneannne eerneentsnenaes 12
314 REfEIENCEScoveeeeeeriereetecrerereetmeeseseessesssessssseessassnssssesssnssessesssosssnns 12
3.5 Assignment Contexts and Expression Conformanceccceceeneneee.. 16
3.6 Standard Post ProCESSINg.........cccveereererereerensreresseserersesesenresesenesessessas 17
3.7 EXTENSIONS ...ueceeeerreeeeeterecteeseeesneeasesseesseseseeesssesssssmmsenssensessnsassssans 17
Data Description Language and Data Semantics 19
4.1 Definitional Modules..........c.cevereeeeneenerreeneeeeecesseseeaeeseeseessssssssnene 19
4.1.1 Base Domain Declarationscececeureeeeeereeeueerensesseeseesnsens 20
4.1.1.1 Base Domain Parameters.........cccocvvruevercrneensercenenne 20

4.1.1.2 Base Domain Pattemnscccceveeeeeeveeeeeereeeeeeerenees 21

4.1.1.3 Base Domain OpHORS.........ccceeereeurerrerearencarererenanne 22

4.1.2 The SAME Standard Base Domainsccccceeeeeereeerensneenens 24

4.1.3 Domain and Subdomain Declarations............ceeceeeeveeevcerverenene 24

4.1.4 Constant DeClarations.........c.ceeeveeeveevrescveeseseeenessesoseessesssssssnans 28

4.1.5 RecOord DeClarationsceceeeeeremeercrerueseronseessesesssesssssasssnens 30

4.1.6 Enumeration Declarationsooeeeceeeeereeseeneeererseesneesseens 32

4.1.7 Exception Declarations..............eceeveuiverreereneemsncniercsveessennnn. 33

4.1.8 Status Map Declarations...........ccocoeeucueeremernerrneeeesercrenesenennnes 33

4.2 Schema MOAUIESo.eeoeereeeieeeeereeceeeeeesesueeassnsesseesessessesssesasanns 34

Chapter 5§

Appendix A
Appendix B
Appendix C

Appendix D
Appendix E
Appendix F

4.2.1 Table DEfinitionscccceverereereresrerenernrriscsnenseeessesssssassens 35
4.2.2 View DefiNitionS.......ccccerueererererreeseernenrersersesseesessesssessessesssnsenes 36
4.3 Data CONVEISIONS.......ccceoerrrrecrrrerrerrersessesassaessessessesssssessesssesssssosesseses 38
Abstract Module Description Language 41
5.1 ADSIact ModUIES..........ccveeereeeeeeceerececterseeteceeieseeenresenesaes e sssesesnsanes 41
5.2 PrOCEAUTES......ccoreeerrerecnenrierererecssessseseecssessesnressessasnrasssssessesssessnssasones 41
5.3 STAEMENLSceeeveeetrceeeeennerrersesresseesesseesaesassassesssessersessensesssssssnsassnress 46
5.4 Cursor DeClarationsccccveeeerveresesresseersecssessnessessesesesssessessesesssssessennes 49
5.5 Cursor PrOCEAUIES..........coceeverrrreeneerereessensnsnrneresssessersessessessassssesesnens 53
5.6 Input Parameter Lists........ccccceeverereernrsccnnerenreeseeseecsereessesnessessessessesnens 57
5.7 Select Parameter Lists.........cooverueereneerverreeruesneseesessnessseseesssesseonsosessses 58
5.8 Value Lists And Column LiStSccccceereerermereericesreesersrereesneesssenns 61
5.9 Into_Clause And Insert_From_Clauseceecerrueveevreerrrsvesueerenecsaens 63
5.10 Value EXPIESSIONSc.cceeicrcrvricennsecncressscsucssensoneraserasossssssesssnmesessssens 66
5.11 Search Conditions........ccccceeeerreerreerrerreeseesneersessesssesssessesssesseessesssessseses 72
5.11.1 Comparison Predicate.........cccocereceeruereenerrereeereeressensessrsnsnsnenens 74
5.11.2 Between Predicateocoeoeeeveieieieenreneeereesnecnecveesreensensesseas 74
5.11.3 IN PrediCateccveiceereernereceecsseesseeesesnesesssessssnessssassssnneseens 74
5.11.4 Like PrediCateccveoeeeerreereeerereeneressaesessneesseeseessessssnesssnesenns 74
5.11.5 Null Predicateccuceveeveereesrreerenrecsecenesenseereessesensessersessesserens 74
5.11.6 Quantified Predicateccoveereveeneeeneeneenreseecesenerensesnencenans 74
5.11.7 EXists Predicate.........ccoouereerrrreerenreeseenneneereeserrnsseesnessessesssssessens 75
5.12 SUDQUETIES......cceeeririinnrcireniaienearnsessenssasnsssessassssaesssseorssssesssnensassaseass 75
5.13 StAtus ClAUSESccccreeerreerrecarencenreneeressessesnsesessessessossessosssssessessessassessonses 75
SAMeDL_Standard 77
SAMeDL_System 83
Standard Support Operations and Specifications 85
C.1 Standard Base Domain Operations...........cceeeeveereerreenenessssessesesensnene 85
C.1.1 All DOMAINS......ccocerenrrarereremeressesessesseseesessesevasssessssessennesesssnses 85
C.1.2 Numeric DOMAINScccevermrereeraereerersesessessessesensesnesssessensenes 86
C.1.3 Int and Smallint DOMAInNSscceeereerereeerrerrernenersesnernesessesennns 86
C.1.4 Character DOMAINScceevervrverneessesmenessesseressssnenesseseseseenes 86
C.1.5 Enumeration DOMAInSccocereeeerererveresurueseesessveesensaesnnes 87
C.1.6 Boolean FUNCHONScccuvereeererrrmcresenrnssnesneseesesnesenessnae 88
C.1.7 Operations Available to the Applicationcceceeevevereasrerecees 88
C.2 Standard Support Package SpecifiCationsccceceeueererrerereeressseeseenes 89
C.2.1 SQL_Standard...........cccoererrecereereeerrneesnesnecesesnesseseesessessosssssseas 89
C.2.3 SQL_B00Iean_PKgccceceueereerrrenerereerereeseessssessesesssnsssasnnes 90
C.2.4 SQL_INE_PKE ..cceoueverereiererereereereneresessnsesssessessssssesssssssaseseseses 90
C.2.5 SQL_SMAIlNt_PKgcccccorerrrrrerererererereerereresesesssesesessesesssonnas 92
C.2.6 SQL_REAI_PKEcuccereecrrerereneensnscacassessesesesesssrsssnsesanne 94
C.2.7 SQL_Double_Precision_PKg.......cccccceerereerererenerenenesercscsessenens 96
C.2.8 SQL_Char_PKg......c.cooveererrenrrcrersenercseresessescssssessossssssesssesese 96
C.2.9 SQL_ENUmEration_PKgcecocevereveveunueseessnnesesescresssssesnene 98
Transform Chart 101
Glossary 105
Syntax Summary 107

121

Index

Chapter 1 - Introduction

Chapter1 Introduction

1.1 Scope

This manual defines the SQL Ada Module Extensions Description Language (SAMeDL).
The language described herein is strongly based on the draft language outlined by Marc Graham
in [SAME].

The description in this manual assumes an underlying working knowledge, on the part of the
reader, of the SAME methodology [SAMEGuide], the SQL standard [SQL], and the Ada
standard [Ada].

1.2 Notation

The notation used in this manual to specify language constructs is based on the Backus-Naur
Form (BNF), which uses grammar rules to specify the syntax of a language. The syntax of a
language defines what sequences of symbols are legal in that language.

A BNF grammar consists of a set of terminal symbols, a set of non-terminal symbols, and a set of
productions (or rewrite rules).

Non-terminal symbols are expanded by rewrite rules. They represent program constructs such as
statements and cxpressions.

Terminal symbols are not expanded by rewrite rules. They represent program symbols such as
reserved words and punctuation marks.

A production is a rewrite rule that allows a non-terminal symbol to be replaced by a (possible
empty) sequence of terminal and non-terminal symbols.

The following naming conventions are used within the grammar rules:

» Lower case names (abstract_module, constant_declaration, etc.) represent non-terminal
symbols.

» Lower case names that are bold-faced (ab:iract, record, etc.) and bold-faced strings
(=, <>, etc.) represent terminal symbols.

» The italicized prefixes Ada and SQL, when appearing in the names of syntactic
categories, indicate that an Ada or SQL syntactic category has been incorporated into
this document. For example, the category Ada_identifier is identical to the category
identifier as described in section 2.3 of [Ada]; whereas the category SQL_identifier is
identical to the category identifier as described in section 5.3 of [SQL].

» Numerical suffixes attached to the names of syntactic categories are used to distinguish
appearances of the category within a rule or set of rules.

The rules of productions are applied as follows:
1. There is a special non-terminal symbol, called the start symbol, from which all legal

sequences are generated." For example, the start symbol for the SAMeDL grammar is
compilation_unit.

Intermetrics, Inc. 1

SAMeDL Language Reference Manual

2. Each production is of the form

<non-terminal symbol> ::= <sequence of symbols>

and is interpreted as "the non-terminal on the left hand side may be replaced by the
sequence of symbols on the right hand side." For example

a:=bc

means that "a" may be replaced by "b c".

. The symbol 'I' may be used on the right hand side of a production to indicate a choice of

replacements. For example
az=bjc

means that "a" may be replaced by either "b" or "c".

. The symbols '[' and '}’ signify that the enclosed sequence is optional. For example

ar=b{c]

means that "c" is optional, and therefore "a" may be replaced by either "b" or "bc".

. The symbols '{' and '}’ signify the repetition (possibly 0 times) of the enclosed

sequence. For example
a:=b{b}

means that "a" may be replaced by one or more "b" symbols.

1.3 Forward References

In order that a given section give thorough coverage of its subject, it is often necessary to employ
terms, or to refer to grammatical productions, which have not yet appeared in the text. Generally
references to the appropriate chapter or section will appear. For convenience, an alphabetic
summary of the entire grammar of the language appears in Appendix F.

1.4 References

1.

[Ada] Reference Manual for the Ada Programming Language, Ada Joint Program Office,
1983. .

[ESQL] Database Language - Embedded SQL, American National Standards Institute,
X3.168-1989, 1989.

[SAME] The SQL Ada Module Description Language, Intermediate Version 3, Software
Engineering Institute/Carnegie Mellon University, 21 November 1991.

[SAMEGuide] Guidelines for the Use of the SAME, Marc H. Graham: Software
Engineering Institute/Carnegie Mellon University, Technical Report CMU/SEI-89-TR-16,
May 1989.

Intermetrics, Inc.

Chapter 1 - Introductian.

5. [SQL] Database Language - SQL, American National Standards Institute, X3.135-1989,
1989.

6. [User] SAMeDL Development Environment User Manual, Intermetrics, Inc., IR-VA-012, 28
February 1992.

1.5 Design Goals And Language Summary
1.5.1 Design Goals

The SQL Ada Module Description Language (SAMeDL) is a Database Programming Language
designed tc automate the construction of software conforming to the SQL Ada Module
Extensions (S AME) application architecture (see [SAMEGuide]).

The SAME is a modular architecture. It uses the concept of a Module as defined in [SQL] and
[ESQL]. As a consequence, a SAME-conforming Ada application does not contain embedded
SQL statements and is not an embedded SQL Ada program as defined in [ESQL]. Such a
SAME-conforming application treats SQL in the manner in which Ada treats all other languages:
it imports complete functional modules, not language fragments.

Modular architectures treat the interaction of the application program and the database as a
design object. This results in a further isolation of the application program from details of the
database design and implementation and improves the potential for increased specialization of
software development staff.

Ada and SQL are vastly different languages: Ada is a Programming Language designed to
express algorithms, which SQL is a Database Language designed to describe desired results.
Text containing both Ada and SQL is therefore confusing and difficult to maintain. SAMeDL is
a Database Programming Language designed to support the goals and exploit the capabilities of
Ada with a language whose syntax and semantics is based firmly in SQL. Beyond modularity,
the SAMeDL provides the application programmer the following services:

-- An abstract treatment of null values. Using Ada typing facilities, a safe treatment of
missing information based on SQL is introduced into Ada database programming. The
treatment is safe in that it prevents an application from mistaking missing information
(null values) for present information (non-null values).

-- Robust status code processing. SAMeDL’s Standard Post Processing provides a
structured mechanism for the processing of SQL status parameters.

-- Strong typing. SAMeDL’s typing rules are based on the strong typing of Ada, not the
permissive typing of SQL.

-- Extensibility. The SAMeDL supports a class of user extensions. Further, it controls,
but does not restrict, implementation defined extensions.

1.5.2 Language Summary
1.5.2.1 Overview
The SAMeDL is designed to facilitate the construction of Ada database applications that

conform to the SAME architecture as described in [SAMEGuide]. The SAME method involves
the use of an abstract interface, an abstract module, a concrete interface, and a concrete module.

Intermetrics, Inc. 3

SAMeDL Language Reference Manual

The abstract interface is a set of Ada package specifications containing the type and procedure
declarations to be used by the Ada application program. The abstract miodule is a set of bodies
for the abstract interface. These bodies are responsible for invoking the routines of the concrete
interface, and converting between the Ada and the SQL data and error representations. The
concrete interface is a set of Ada specifications that defined the SQL procedures needed by the
abstract module. The concrete module is a set of SQL procedures that implement the concrete
interface.

Within this document, the concrete module of [SAMEGuide] is called an SQL module and its
contents are given under the headings SQL Semantics. The abstract modules of [SAMEGuide]
are given under the heading Ada Semantics.

1.5.2.2 Compilation Units

A compilation unit consists of one or more modules. A module may be either a definitional
module containing shared definitions, a schema module containing table, view, and privilege
definitions, or an abstract module containing local definitions and procedure and cursor
declaratons.

1.5.2.3 Modules

A definitional module contains the definitions of base domains, domains, constants, records,
enumerations, exceptions, and status maps. Definitions in definitional modules may be seen by
other modules.

A schema module comtains the definitions of tables, views, and privileges.

An abstract module defines (a portion of) an application’s interface to the database: it defines
SQL services needed by an Ade application program. An abstract module may contain
procedure declarations, cursor declarations, and definitions such as those that may appear in a
definitional module. Definitions in an abstract module, however, may not be seen by other
modules.

1.5.24 Procedures and Cursors

A procedure declaration defines a basic database operation. The declaration defines an Ada
procedure declaration and a corresponding SQL procedure. A SAMeDL procedure consists of a
single statement along with an option input parameter list and an optional status clause. The
input parameter list provides the mechanism for passing information to the database at runtime.
A statement in a SAMeDL procedure may be a commit statement, rollback statement, insert
statement query, insert statement values, update statement, select statement or an
implementation-defined extended statement. The semantics of a SAMeDL statement directly
parallel that of its corresponding SQL statement.

SAMeDL cursor declarations directly parallel SQL cursor declarations. In contrast to the
language in [SQL], the procedures that operate on cursors, procedures containing either an open,
fetch, close, update positioned or delete positioned statement, are packaged with the declaration
of the cursor upon which they operate, thereby improving readability. Further, if no procedure
containing an open, fetch or close statement is explicitly given in a cursor declaration, the
language provides such procedures implicitly, thereby improving ease of use.

4 : Intermetrics. Inc.

Chapter 1 - Introduction

1.5.25 Domain and Base Domain Declarations

Objects in the language have an associated domain, which characterizes the set of values and
applicable operations for that object. In this sense, a domain is similar to an Ada type.

A base domain is a template for defining domains. A base domain declaration consists of a set
of parameters, a set of patterns and a set of options. The parameters are used to supply
information needed to declare a domain or subdomain derived from the base domain. Patterns
contain templates for the generation of Ada code to support the domain in Ada applications.
This code generally contains type declarations and package instantiations. Options contain
information needed by the compiler. Parameters may be used in the patterns and options and
~ their values may be referenced in other statements.

Base domains are classified according to their associated data class. A data class is either
integer, fixed float, enumeration, or character. A numeric base domain has a data class of
enumeration, and defines both an ordered set of distinct enumeration literals and a bijection
between the enumeration literals and their associated database values. A character base domain
has a data class of character.

1.5.2.6 Other Declarations

Certain SAMeDL declarations are provided as a convenience for the user. For example, constant
declarations name and associate a domain with a static expression. Record declarations allow
distinct procedures to share types. An exception declaration defines an Ada exception
declaration with the same name.

1.5.2.7 Value Expressions and Typing

Value expressions are formed and evaluated according to the rules of SQL, with the exception
that the strong typing rules are based on those of Ada. In the typing rules of the SAMeDL, the
domain acts as an Ada type in a system without user defined operations. Strong typing
necessitates the introduction of domain conversions. These conversions are modeled after Ada
type conversions; the operational semantics of the SAMeDL domain conversion is the null
operation or identity mapping. The language rules specify that an informational message be
displayed under circumstances in which this departure from the Ada model has visible effect.

1.5.2.8 Standard Post Processing

Standard post processing is performed after the execution of an SQL procedure but before
control is returned to the calling application procedure. The status clause from a SAMeDL
procedure declaration attaches a status mapping to the application procedure. That status
mapping is used to process SQL status data in a uniform way for all procedures and to present
SQL status codes to the application in an application-defined manner, either as a value of an
enumerated type, or as a user defined exception. SQL status codes not specified by the status
map result in a call to a standard database error processing procedure and the raising of the
predefined SAMeDL exception, SQL_Database_Error. This prevents a database error from
being ignored by the application.

1.5.29 Extensions

The data semantics of the SAMeDL may be extended without modification to the language by
the addition of user-defined base domains. For example, a user-defined base domain of DATE
may be included without modification to the SAMeDL.

Intermetrics, Inc. 5

-

SAMeDL Language Reference Manual

DBMS specific (i.e., non-standard) operations and features that require compiler modifications
(e.g., dynamic SQL) may also be included into the SAMeDL. Such additions to the SAMeDL
are referred to as extensions. Schema elements, table elements, statements, query expressions,
query specifications, and cursor statements may be extended. The modules, tables, views,
cursors, and procedures that contain these extensions are marked (with the keyword extended) to
indicate that they go outside the standard.

1.5.2.10 Default Values in Grammar
Obvious but over-ridable defaults are provided in the grammar. For example, open, close, and
fetch statements are essential for a cursor, but their form may be deduced from the cursor

declaration. The SAMeDL will therefore supply the needed open, close, and fetch procedure
declarations if they are not supplied by the user.

6 Intermetrics, Inc.

Chapter 2 - Lexical Elements

Chapter 2 Lexical Elements

SAMeDL compilation units are sequences of lexical elements, which represent operators,
dehimiters, reserved words, identifiers, and numbers. These lexical elements correspond to the
terminal symbols that appear in the grammar rules that define the syntax of SAMeDL.

2.1 Character Set

The only characters allowed in the text of a compilation are the basic characters and the
characters that make up character literals (described in Section 2.4). Each character in the basic
character set is represented by a graphical symbol.

basic_character ::= letter |
digit
special_character |
space_character

The characters included in each of the above categories or the basic characters are defined as
follows:

1. letter
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz

2. digit

0123456789

3. special_character
()Y *+,-) <=>1

4. space_character

2.2 Lexical Elements, Separators, And Delimiters

The text of a SAMeDL compilation unit is a sequence of lexical elements. Each lexical element
is either a delimiter, an identifier (which may be a reserved word), a literal, or a comment.

Blanks, tabs, newlines, and comments are considered to be separators provided they do not
appear within other lexical elements (i.e., a comment or a literal). One or more separators are
allowed between adjacent lexical elements; explicit separators are required between adjacent
lexical elements when they could be interpreted as a single lexical element without separation.
A delimiter is either one of the following special characters

()" +,-./:;<=>|

or one of the following compound delimiters each composed of two adjacent special characters

> .. = > > <=

Intermetrics, Inc. 7

SAMeDL Language Reference Manual

Each of the special characters listed for single character delimiters is a single delimiter except if
this character is used as a character of a compound delimiter, or as a character of a comment or
literal.

The remaining lexical element forms are described in the following sections of this chapter.
2.3 Identifiers

Identifiers are used as names and also as reserved words. In general, they take the form of Ada
identifiers (see [Ada] Section 2.3). The exception is the use of SOL_identifiers as the names of
schemas, tables, views, and columns. The major difference between SQL_identifiers and
Ada_identifiers is that SQL_identifiers are limited to 18 characters in length, whereas
Ada_identifiers are essentially unlimited in length. An SQL reserved word shall not appear at a
point where the grammar specifies an SQL _identifier, and an Ada reserved word shall not appear
at a point where the grammar specifies an Ada_identifier.

identifier ::= letter { [underline] letter_or_digit }

undertine = _

letter_or_digit ::= letter | digit
The function SQLNAME that appears in this language is an approximation of an injection (one-
to-one function) from the set of Ada_identifiers to the set of SOL_identifiers, in the sense that, if

I1 and I3 are distinct Ada_identifiers within a SAMeDL compilation unit, then SQLNaAME(]}) is
distinct from SQLNAME(T2).

2.4 Literals And Data Classes

SAMeDL literals follow the SQL literal syntax and are categorized into five data type classes:
character, integer, fixed, float, and enumeration.

literal ::= database_literal | enumeration_literal
database_literal ::= character__literél |
integer_literal |
fixed_literal - |
float_literal
character_literal ::= * { character}’
character ::= implementation defined
integer_literal ::= digit { digit }
fixed_literal ::= integer_literal . integer_literal |
. integer_literal |
integer_literal .
float_literal ::= fixed_literal exp [+ | -] integer_literal
exp:=e|E

enumeration_literal ::= Ada_identifier

8 Intermetrics, Inc.

Chapter 2 - Lexical Elements

1. Each literal L has an associated data class, denoted throughout this manual as
DATACLASS(L). In particular, if L is a character, integer, fixed, float, or enumeration
literal, the associated data class for L is character, integer, fixed, float, or enumeration
respectively.

2. Every character_literal CL has an associated length LENGTH(CL) in the sense of [SQL],
section 5.2, rule 2. For any non-character literal, L, LENGTH(L) = NO_LENGTH.

3. Integer, fixed, and float literals are collectively known as numeric literals; furthermore,
integer and fixed literals are known as exact numeric literals while float literals are known
as approximate numeric literals. Every numeric literal NL has a scale, SCALE(NL). An
integer literal has scale 0. The scale of a fixed literal is the number of digits appearing to
the right of the decimal point within the literal. The scale of a float literal is equal to the
scale of any other float literal and is larger than the scale of any non-float numeric literal.
Any non-numeric literal L, has SCALE(L) = NO_SCALE. See section 3.4 for the
interpretation of enumeration_literals. ,

4. The single quote or "tic" character can be included in a character_literal by duplicating the
tic. For example, the string 'tic "' represents a character string literal of length 5 containing
the characters: t, i, ¢, space, and tic.

Examples: |
-- the null character string
" - chéracter string of length 1 containing "tic"
‘a character string’ -- character string of length 18
012 12 -- integer literals having the value 12
05 5 1. -- fixed literals

1.0E-5 5e10 .5E+8 -- float literals

2.5 Comments

Comments are used to document the program for purposes of readability and maintainability.
They do not affect the meaning of the program, and are present solely for the enlightenment of
the human reader.

A comment starts with two adjacent hyphens and extends up to the end of the line. A comment
can appear on any line of a SAMeDL compilation unit.

Intermetrics, Inc. 9

SAMeDL Language Reference Manual

2.6 Reserved Words

The identifiers listed below are reserved words and are reserved for special significance in the
language. For readability of this manual, reserved words will appear “boldfaced”.

10

abstract fetch pattern
all for pos
and foreign primary
any from privileges
as function procedure
asc public
authorization grant
avg group raise
record
base having references
between rollback
body image
boolean in scale
by insert schema
into select
check is set
class some
close key status
commit subdomain
connect length sum
constant like
conversion table
count map to
current mark type
cursor max
min union
data module unique
dblength update
dbms name use
declare named user
default new uses
definition not
delete null values
derived view
desc of
distinct on - where
domain open with
option work
end or
enumeration order
escape out
exception
exists
extended

Intermetrics, Inc.

Chapter 3 - Common Elements

Chapter3 Common Elements

3.1 Compilation Units

A compilation unit is the smallest syntactic object that can be successfully processed by the
SAMeDL compiler. It consists of a sequence of one or more modules.

compilation_unit ::= module { module }

module ::= definitional_module | schema_module | abstract_rhodule

3.2 Context Clauses

The context clauseis the means by which a SAMeDL module gains visibility to names defined in
other modules. The syntax and semantics of SAMeDL context clauses are similar to the syntax
and semantics of Ada context clauses (see [Ada] 8.4, 10.1.1).

context ::= context_clause { context_clause }
context_clause ::= with_clause | with_schema_clause | use_clause

with_clause ::= with module_name [as_phrase]
{ , module_name [as_phrase]} ;

use_clause ::= use module_name { , module_name} ;

with_schema_clause ::= with schema schema_name [as_phrase]
{, schema_name [as_phrase]} ;

module_name ::= Ada_identifier
schema_name ::= SQL_identifier

as_phrase ::= as Ada_identifier

1. Consider the following with_clause and with_schema_clause:

withM[as N1 |;
with schema S[as N2 |;

In these clauses, M shall be the name of a definitional module and S the name of a schema
module. The name M of the definitional module is said to be exposed if the as_phrase is
not present in the context_clause; otherwise the name M is hidden and the name N is the
exposed name of M. Similar comments apply to S and N3. The name of a module (see
Sections 4.1, 4.2, and 5.1) is its exposed name within the text of that module. Within the
text of any module, no two exposed module names shall be the same.

2. A module_name in a use_clause shall be the exposed name of a definitional_module that is
an operand of a prior with_clause.

Intermetrics, Inc. : 11

SAMeDL Language Reference Manual

3. The scope of a with_clause or use_clause in the context of a module is the text of that
module.

4. Only an abstract or schema module context may contain a with_schema_clause.

Note: As a consequence of these definitions, abstract modules cannot be brought into the context
of (withed by) another module.

3.3 Table Names and the From Clause

The table names in insert, update, and delete statements and the from clauses of select
statements, cursor declarations, and subqueries (see Sections 5.3, 5.4, and 8.12) also make
names, in particular column names, visible. The from_clause differs from an SQL_from_clause
(ISQL] 5.20) only in the optional appearance of the as keyword, which is inserted for uniformity
with the remainder of the language.

from_clause ::= from table_ref { , table_ref }
table_ref ::= table_name [[as] correlation_name]
table_name ::= [schema_ref .] SQL_identitier
schema_ref ::= schema_name | Ada_identifier
correlation_name ::= SQL_identifier

1. If present, schema_ref shall be either the schema_name in the authorization clause of the
abstract module in which the table_name appears (see Section 5.1) or the exposed name of
a schema module in the context of the module in which table_name appears (see Section
3.2). In either case, the SQL_identifier shall be the name of a table within that schema
module. If the schema_ref is absent from the table_name, then the SQL_identifier shall be

the name of a table within the schema module named in the authorization clause of the
module in which the table name appears.

2. If the correlation name is not present in a table_ref, then the table name in the table_ref is
exposed; otherwise the table_name is hidden and the correlation_name is exposed. No two
exposed names within a from_clause shall be the same.

3. For the scope of table_names see [SQL] section 5.20, syntax rule 4; section 8.5, syntax rule
3; and section 8.12, syntax rule 5.

3.4 References
The rules concerning the meaning of references are modeled on those of Ada and those of SQL.
As neither module nesting nor program name overloading occurs, these rules are fairly simple,
and are therefore listed. For the purposes of this clause, an item is either:

» A definitional, schema, or abstract module (Sections 4.1, 4.2, 5.1)

* A procedure, a cursor, or a procedure within a cursor (Sections 5.2, 5.4, 5.5)

» Anything in the syntactic category definition (Section 4.1)

12 Intermetrics, Inc.

Chapter 3 - Common Elements

* A domain parameter (Section 4.1.1.1)
* An enumeration literal within an enumeration (Sections 2.4, 4.1.6)
* An exception (Section 4.1.7)
* An input parameter of a procedure or cursor declaration (Sections 5.2, 5.4, and 5.6)
e A table defined within a schema module (Section 4.2)
» A column defined within a table (Section 4.2)
A location within the text of a module is said to be a defining location if it is the place of:

¢ The name of an item with the item's declaration (Nofe: this includes enumeration
literals within the declaration of an enumeration and domain parametcrs within the
declaration of a domain)

* The name of a table in a from_clause
» The name of the target table of an insert, update, or delete statement
* A schema_name or module_name in a context_clause

Text locations not within comments that are not defining locations are reference locations. An
identifier that appears at a reference location is a reference to an item. The meaning of that
reference in that location, that is, the identity of the item referenced, is defined by the rules of
this clause. When these rules determine more than one meaning for an identifier, then all items
referenced shall be enumeration literals.

module_reference ::= Ada_identifier

schema_reference ::= schema_name | Ada_identifier
base_domain_reference ::= | module_reference .] Ada_identifier
domain_reference ::= [module_reference .] Ada_identifier
domain_parameter_reference ::= domain_reference.Ada_identifier
subdomain_reference ::= [module_reference .]| Ada_identifier
enumeration_reference ::= [module_reference . | Ada_identifier
enumeration_literal_reference ::= [module_reference .] Ada_identifier
exception_reference ::= [module_reference .] Ada_identifier
constant_reterence ::= [module_reference .] Ada_identifier
record_reference ::= [module_reference .] Ada identifier
procedure_reference ::= [module_reference .] Ada_identifier

cursor_reference .= [module_reference . | Ada_identifier

Intermetrics, Inc. 13

SAMeDL Language Reference Manual

cursor_proc_reference ::= [cursor_reference . | Ada_identifier

input_reference ::= [procedure_reference .] Ada_identifier |
[cursor_proc_reference .] Ada_identifier

status_reference ::= [module_reference .] Ada_identifier

table_reference ::= [schema_reference .] SQL_identifier

column_name::= SQL_identifier

column_reference ::= [table_reference .] column_name
A reference is a simple name (an identifier) optionally preceded by a prefix : a sequence of as
many as three identifiers, separated by dots. Unlike Ada (see [Ada] sections 8.2, 8.3), it is
necessary to treat the prefix as a whole, not component by component.
For the purposes of this clause, the text of a cursor does not include the text of the procedures, if
any, contained within the cursor. A dereferencing rule is said to determine a denotation for a
reference if it either (i) specifies an item to which the reference refers, or (ii) determines that the
reference is not valid.
Prefix Denotations
The prefix of a reference shall denote one of the following:

* An abstract module, procedure, cursor or cursor procedure, but only from within the
text of the abstract module, procedure, cursor, or cursor procedure.

« A table, if the table is in scope at the location in which the reference appears.
* A domain.
* A definitional or schema module.
Note: As a consequence of the rule given earlier, that all meanings of an identifier with multiple
meanings must be enumeration literals, a prefix may have at most one denotation or meaning, as
it may not denote an enumeration literal.
Let L be the reference location of prefix P. LetX, Y, and Z be simple names. Then:
1. If L is within the text of a cursor procedure U, then P denotes
a. The cursor procedure U if either
i. P isof the formX and X is the simple name of U; or
ii. P is of the form X.Y, X is the name of the cursor containing L (and
therefore also U); in which case Y shall be the simple name of U else
the prefix is not valid;
ili. P is of the form X.Y.Z; X is the name of the module containing L; Y is

the name of the cursor continuing L (and therefore also U); in which
case Z shall be the simple name of U else the prefix is not valid;

14 Intermetrics, Inc.

Chapter 3 - Common Elements

b. The table T being updated in a cursor_update_statement, if the statement within
the cursor procedure containing L is a cursor_update_statement and either

i. P isof the formX and X is the simple name of T, or

ii. P is of the form X.Y,; X is an exposed name for the schema module S
containing the declaration of T and Y is the simple name of T.

2. Ifrule 1 does not determine a denotation for P, then P denotes
a. The cursor or procedure R, if L is within the text of R and either
i. P isof the form X and X is the simple name of R; or

ii. P is of the form X.Y; X is the name of the module containing L (and
therefore also R); Y is the simple name of R ;

b. ThetableT, if L is in the scope of table name T (see Section 3.3) and either
i. P isof the formX and X is the simple name exposed for 7, or

ii. P is of the form X.Y; X is the exposed name of the schema module
containing the table T and Y is a simple name of T.

3. Ifrules 1 and 2 do not determine a denotation for P, then P denotes the domain R,

a. If P is of the formX and X is the simple name of R and the declaration of R
appears in the module containing L and precedes L within that module; or

b. P is of the form X.Y; X is the exposed name of the module containing the
declaration of R and Y is the simple name of R.

4. If none of the above rules determines a denotation for P, then P is a simple name that
denotes the

a. Definitional module M if either
i. L is in the scope of a with_clause exposing P as the name of M; or
ii. L is in the definitional module M and P is the name of M.

b. Schema module S if either

i. L isin the scope of a with_schema_clause exposing P as the name of S;
or .

il. L is in an abstract module whose authorization clause identifies S and P
is the name of S;

c. Abstract module M if L is within the text of M and P is the name of M,

d. Domain D, if D is declared within a module N such that there is a use clause
for N in the module containing L, and P is the name of D.

Intermetrics, Inc. 15

SAMeDL Language Reference Manual

Denotations of Full Names

Let L be the location of a reference Id. Then /d is a reference to the item Im if Im is not a
module, procedure, cursor or cursor procedure, or table and

1. Id is of the form PX where X is the name of Im and P is a prefix denoting

a.

b.

d.

€.

f.

A definitional module containing the declaration of Im;

The abstract module, M, in which L appears, and /m is declared in M at a text
location that precedes L,

The procedure, cursor, or cursor procedure that contains L, and /m is an input
parameter to that procedure, cursor, or cursor procedure;

A table, in which case Im is a column within that table;
A schema module, in which case Im is a table within that module.

A domain, in which case Im is a parameter in that domain.

2. Ild is of the form X and X is the name of Im. Then

a.

L appears in a cursor, procedure, or cursor procedure and
i. Im is an input parameter to that cursor, procedure, or cursor procedure;
ii. Im is a column of one of the tables in scope of L;

If rule (a) does not determine a denotation for Id, then /m is declared in the
module containing L at a location preceding L;

If neither rule (a) nor (b) determines a denotation for /d, then Im is declared
within a module M such that the module containing L has a use clause for M.

Note: AnitemIm is visible atlocation L if there exists a name ld (either simple or preceded by
a prefix) such that if /d were at location L, then /d would be a reference to /m.

3.5 Assignment Contexts and Expression Conformance

A value expression (see Section 5.10) is said to appear in an assignment context if it is either:

1. The static expression in a constant declaration (see Section 4.1.2);

. A select parameter (see Section 5.7);

2
3. A value in an insert_value_list (see Section 5.8); or
4

. The right hand side of a set_item within an update_statement (see Section 5.3).

A value expression VE is said to conform to a domain D under the following conditions:

16

Intermetrics, Inc.

Chapter 3 - Common Elements

1. 1f DOMAIN(VE) # NO_DOMAIN, then DOMAIN(VE) = D.

If DATACLASS(D) is integer or fixed, then DATACLASS(VE) is integer or fixed.
If DATACLASS(D) is float, then DATACLASS(VE) is integer, fixed, or float.

If DATACLASS(D) is character, then DATACLASS(VE) is character.

LA

If DATACLASS(D) is enumeration, then if DOMAIN(VE) = NO_DOMAIN, then VE
is an enumeration literal in D.

3.6 Standard Post Processing

Standard post processing is the processing that is done after execution of an SQL procedure, but
before control is returned to the calling application. That processing is described as follows:

1. If a status map is attached to the procedure (see Section 5.13), then if {nat niap contains
an sqlcode_assignment whose left-hand side is equal to the value of the SQLCODE
parameter, then the Ada procedure's status parameter is set to the value of the right hand
side of the sqlcode_assignment, if that right hand side is an Ada_enumeration_literal; if
that right hand side is a raise statement, then the named Ada_exception is raised. This
is not considered an error condition in the sense of the next paragraph. In particular,
SQL_Database_Error_Pkg.Process_Database_Error is not called.

2. If the value of the SQLCODE parameter is not matched by the left hand side of any
sqlcode_assignment in the map attached to the procedure or there is no status map
attached to the procedure and the value of the SQLCODE parameter is other than zero,
then an error condition exists. In this case the parameterless procedure
SQL_Database_Error_Pkg.Process_Database_Error is called. The exception
SAMeDL _Standard.SQL_Database_Error is raised.

3.7 Extensions

Extended tables, views, modules, procedures, and cursors allow for the inclusion into the
SAMeDL of DBMS-specific, that is, non-standard, operations and features, while preserving the
benefits of standardization. These DBMS-specific extensions may be verbs, such as connect and
disconnect, that signal the beginning and end of program execution, or functions, such as date
manipulation routines, that extract the month from a date. The use of extensions, particularly the
extended keyword, serves to mark those modules, tables, views, cursors, and procedures that go
outside the standard and may require effort should the underlying DBMS be changed.

extended_schema_element ::= implementation defined
extended_table_element ::= implememntation defined
extended_statement ::= implementation defined
extended_query_expression ::= implementation defined
extended_query_specification ::= implementation defined

extended_cursor_statement ::= implementation defined

Intermetrics, Inc. 17

SAMeDL Language Reference Manual

Details concerning implementation defined extended features can be found in [User).

18 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

Chapter 4 Data Description Language and Data Semantics
4.1 Definitional Modules

Definitional modules contain declarations of one or more declarations of elements such as
domains, constants, records, enumeration types, and status maps. An Ada library unit package
declaration is defined for each definitional module.

definitional_module ::= [context]
[extended]
definition module Ada_identifier_1 is
{ definition)
end [Ada_identifier_2] ;

definition := base_domain_declaration |
domain_declaration |
subdomain_declaration |
constant_declaration |
record_declaration |
enumeration_declaration |
exception_declaration |
status_map_declaration

When present, Ada_identifier_2 shall equal Ada_identifier_1.
Notes:

» No with_schema_clause shall appear in the context of a definitional module (see
Section 3.2). :

+ No two declarations within a definitional module shall have the same name, except for
enumeration literals (see Section 4.1.6).

Ada Semantics
For each definitional module within a compilation unit there is a corresponding Ada library unit
package generated which has the same name as the definitional module. For each definition

within the definitional module, an Ada construct which provides the appropriate Ada semantics
for the definition will be generated and placed within the specification of that package.

Intermetrics, Inc. 19

SAMeDL Language Reference Manual

4.1.1 Base Domain Declarations

Base domains are the basis on which domains are defined. A base domain declaration has three
parts: a sequence of parameters, used in domain declarations to supply information to the other
two parts; a sequence of patterns, used to produce Ada source code in support of a domain; and a
sequence of options, used by the compiler in implementation-defined ways.

base_domain_declaration ::= [extended] base domain Ada_identifier_1
[(base_domain_parameter_list)]
Is -
patterns
options
end [Ada_identifier 2] ;

base_domain_parameter_list ::= base_domain_parameter { ; base_domain_parameter }

If present, Ada_identifier_2 shall equal Ada_identifier 1. Ada_identifier_1 is the name of
the base domain.

The keyword extended may appear in a base_domain_declaration only if it also appears in
the enclosing module declaration.

4.1.1.1 Base Domain Parameters

20

base_domain_parameter ::= Ada_identifier : data_class [:= static_expression] |
map = pos
map := image

data_class ::= integer]
character |
fixed i
float |
enumeration

The Ada identifiers within the list of base_domain_parameters of a
base_domain_declaration are the names of the parameters that may appear in a
parameter_association_list within a domain_declaration based on this base domain (see
section 4.1.3). The static_expression within a base_domain_parameter, when present,
specifies a default value for the parameter. This default value shall be of the correct
data_class; that is, in the parameter declaration

Id : dcl = expr;

where dcl is a data_class, DATACLASS(cxpr) shall be dcl. Further, DATACLASS(d) is

dcl, whether or not the initializing expression expr is present, and DOMAIN(Id) is
NO_DOMAIN.

A base domain is classified by.its data_class. That is, an enumeration base domain is a
base domain whose data_class is enumeration, a fixed base domain is a base domain
whose data_class is fixed, etc.

Every enumeration base domain has two predefined parameters: enumeration and map.
These parameters are special in that the values that are assigned to them by a domain

Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

declaration (see section 4.1.3) are not of any of the data classes listed above. The value of
an enumeration parameter is an enumeration_reference (see section 3.4); the value of map
is a database_mapping (see section 4.1.3). A base domain declaration may explicitly
declare a map parameter for the purpose of assigning a default mapping. An enumeration
base domain shall not redefine the predefined base_domain_parameter enumeration.

There are two possible default mappings: pos and image. The value pos specifies that the
Ada predefined attribute function 'POS of the Ada type corresponding to the
enumeration_reference, which is the enumeration parameter value in the domain
declaration, shall be used to translate enumeration literals to their database encodings.
Similarly for image and the TMAGE attribute. See annex A of [Ada] and sections 4.1.3
and 4.3 of this document.

4. Every fixed base domain has a predefined parameter scale whose value is an integer of an
implementation defined range (see [SQL]), section 5.5). A fixed base domain shall not
redefine the predefined base_domain_parameter scale.

5. Every character base domain has a predefined parameter length whose value is an integer
of an implementation defined range (see [SQL], section 5.5). A character base domain
shall not redefine the predefined base_domain_parameter length.

4.1.1.2 Base Domain Patterns

The patterns portion of a base domain declaration forms a template for the generation of Ada
text, which forms the Ada semantics of domains based on the given base domain.

patterns ::= { pattern }

pattern ::= domain_pattern |

subdomain_pattern |

derived_domain_pattern
domain_pattern ::= domain pattern is pattern_list

end pattern ;
subdomain_pattern ::= subdomain pattern Is pattern_list
end pattern ;
derived_domain_pattem ::= derived domain pattern is pattern_list
end pattern ;

pattern_list ::= pattern_element { pattem_element }

pattern_element ::= character_literal

Patterns are used to create the Ada constructs that implement the Ada semantics of a domain,
subdomain, or derived domain declaration (see sect 4.1.3). Patterns are considered templates;
parameters within a pattern are replaced by the values assigned to them either in the domain
declaration, by inheritance, or by default.

For a parameter to be recognized as such in a pattern, it is enclosed in square brackets ([,]). For
the purpose of pattern substitution, a base domain may use a parameter self. When a pattern is
instantiated, self is the name of the domain or subdomain being declared. A base domain may
use a parameter parent for the purpose of pattern substitution in a subdomain_pattern or a

Intermetrics, Inc. 21

SAMeDL Language Reference Manual

derived_domain_pattern. When such a pattern is instantiated, parent is the name of the parent
domain (see section 4.1.3).

Within a given character_literal of a pattern, a substring contained in matching curly brackets ({,
}) is an optional phrase. Optional phrases may be nested. An optional phrase appears in the
instantiated template if all parameters within the phrase have values assigned by a domain
declaration; the phrase does not appear when none of the parameters within the phrase has an
assigned value. If some but not all parameters within an optional phrase have values assigned by
a given domain declaration, the declaration is in error.

4.1.1.3 Base Domain Options
options ::= { options }

option ::= fundamental |
for word_list use pattern_list ; |
for word_list use predetined ;

fundamental ::= for not null type name use pattern_list ;
for null type name use pattern_list ;
for data class use data_class ;
for dbms type use dbms_type [pattern_list] ;
for conversion from type to type use converter ;

dbms_type ;= Int |
integer |
smaliint |
real |
double precision |
char |
character |

implementation defined

type ::= dbms | not null | null

converter ::= function pattern_list |
procedure pattemn_list |
type mark

word_list := context clause |
null value |
null_bearing assign |
not_null_bearing assign

Options are used to define aspects of base domains that are essential to the declaration of
domains within the SAMeDL. The fundamental options are required. Implementations may add
options beyond those given above. The meanings of the fundamental options are given by the
following list.

1. The null and not null type names are the targets of the function AdaTYPE. They are the

names of the types of parameters and parameter components in Ada procedures. See
sections 5.6 and 5.7.

2. The data class option specifies the data class (see section 4.1.1.1) of all objects of any
domain based on this base domain. If BD is a base domain to which the data class dc is

22) Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

assigned by an option in its definition, and if D is a domain based directly or indirectly
(see section 4.1.3) on BD, then DATACLASS(D) = dc. The data class governs the use of
literals with such objects (see sections 5.8 and 5.10). ’

The dbms type of a base domain is the SQL_data_type (see [SQL] section 5.5) to be used
when declaring parameters of the concrete interface (SQL module) for all objects of
domains based directly or indirectly on the base domain. See sections 5.6, 5.7, and 5.8 of
this document. If the dbms type of a base domain is implementation defined, the keyword
extended shall appear in the declaration of the base domain.

An operand of the conversion option is a means of converting non-null data between
objects of the not null-bearing type, the null-bearing type (see section 4.1.3) and dbms type
associated with a domain. A method shall be a function, a procedure, an attribute of a type,
or a type conversion. A means of determining the identity of these methods shall appear in
the options of a base domain. The identity of a method may be given as a pattern
containing parameters.

However, enumerauon domains do not have converters between the dbms type and the not
null-bearing type, as the map parameter predefined for all enumeration domains describes a
conversion method between enumeration and database representations of non-null data.
The method is the application, as appropriate of the function described by the
database_mapping that is the operand of the map parameter association (see sections
4.1.1.1 and 4.1.3).

Additional, implementation-defined options are used to provide information to the SAMeDL
Compiler that is not provided via the fundamental options. The Intermetrics SAMeDL Compiler
makes use of 4 additional options, described by the word_list grammar. These options are all
required. The meanings of these options are given by the following list.

1.

The context clause option specifies the WITH and/or USE clauses required by packages
that declaredomains using the base domain. Each base domain must rely on at least one of
the SAMeDL standard packages (SQL_Char, SQL_Int, etc.), so this option is required.
The context clauses are specified as patterns, and the patterns must not include references
to [self], [parent], or any of the base domain parameters. This option must appear once and
only once for each base domain declaration.

The null value option provides the SAMeDL compiler with a pattern that can be used as a
null value for all domain declarations based on the base domain declaration.

The null_bearing assign option designates a function for assigning an object of the base
domain's null-bearing type tq another object of the null-bearing type. Either a pattern or
the word predefined may be used to express the conversion function. Use of the word
predefined indicates that the standard operator := should be used to perform the
conversion.

The not_null_bearing assign option designates a function for assigning an object of the
base domain's not-null type to another object of the not-null type. Either a pattern or the
word predefined may be used to express the conversion function. Use of the word
predefined indicates that the standard operator := should be used to perform the
conversion.

Intermetrics, Inc. 23

SAMeDL Language Reference Manual

4.1.2 The SAME Standard Base Domains

The predefined definitional module, SAMeDL _Standard, contains the declarations of the
predefined SAME Standard Base Domains: SQL_Int, SQL_Smallint, SQL_Char, SQL_Real,
SQL_Double_Precision, SQL_Enumeration_as_Char, and SQL_Enumeration_as_Int. The text
of SAMeDL _Standard appears in Appendix A.

4.1.3 Domain and Subdomain Declarations

24

domain_declaration ::= domain Ada_identifier IS new bas_dom_ref [not nuli]
{ (parameter_association_list)] ;

subdomain_declaration ::= subdomain Ada_identifier IS dom_ref [not null]
[(parameter_association_list) } ;

dom_ref ::= domain_reference | subdomain_reference
bas_dom_ref ::= dom_ref | base_domain_reference
parameter_association_list ::= parameter_association { , parameter_association }
parameter_association ::= Ada_identifier => static_expression |

map => database_mapping]

enumeration => enumeration_reference |

scale => static_expression |

length => static_expression
database_mapping ::= enumeration_association_list | pos | image
enumeration_association_list ::= (enumeration_éssociation { , enumeration_association })

enumeration association ::= enumeration_literal => database_literal

Consider the domain declaration:

domain DD is new EE

a. If EE is a base_domain_reference, then EE is said to be the base domain of DD.

b. Otherwise, EE is a domain_reference or subdomain_reference, the base domain of DD
is defined to be the base domain of EE, DD is said to be derived from EE, and EE is
said to be the parent of DD.

Simi:arly, in the subdomain declaration

subdomain FF Is GG

the base domain of FF is defined as the base domain of GG, FF is said to be a subdomain of
GG, and GG is said to be the parent of FF.

The database type of a domain D, denoted as DBMS_TYPE(D), is the value, appropriately

parameterized, of the for dbms type option from the base domain of D. See section
4.1.1.3.

Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

4. The data class of a domain D, denoted DATACLASS(D), is the data class of its base
domain, the value of the for data class option. A domain is numeric if its data class is
numeric.

5. Except for scale, enumeration, length, and map, an Ada_identifier within a
parameter_association shall be the name of a base_domain_parameter in the declaration of
the base domain of the domain or subdomain being declared. See section 4.1.1.1.

6. A domain or subdomain D is said to assign the expression E to the parameter P, if
a. the parameter_assbciation P => E appears in the declaration of D; or

b. (a) does not hold, D is a subdomain or a derived domain, and the parent domain assigns
the expression E to the parameter P, or

c. (a) and (b) do not hold and in the base_domain_declaration for the base domain of D,
the base_domain_parameter

P:class = E
appears.

In all cases, DATACLASS(E) shall be DATACLASS(P) as defined by the declaration of
the base domain. See section 4.1.1.1.

7. Ifadomain D assigns the expression E to a parameter P, then
+ DOMAIN(D.P) = NO_DOMAIN
+ DATACLASS(D.P) = DATACLASS(E)
+ LENGTH(D.P) = LENGTH(E)
« SCALE(D.P) = SCALE(E)

8. A domain_declaration shall assign an expression to each base_domain_parameter that
appears in any non-optional phrase

» of the base domain's domain_pattern, if the declaration is not declaring a derived
domain;

+ of the base domain's derived_domain_pattern, if the declaration is the declaration of a
derived domain.

Similar rules govern subdomain_declarations and subdomain_patterns. See section 4.1.1.2.
9. The scale of a domain D, denoted SCALE(D), is defined by

e if D is not a numeric domain, SCALE(D) = NO_SCALE;

e if D is an integer domain, SCALE(D) = 0;

» if D is a float domain, SCALE(D) = a value greater than the scale of any non-float

domain or object;

Intermetrics, Inc. 25

SAMeDL Language Reference Manual

10.

11.

12.

13.

26

« if D is a fixed domain, SCALE(D) = the value assigned by D to the scale
base_domain_parameter.

The value assigned to the scale parameter in the declaration of a fixed domain shall be an
integer from an implementation defined range.

The length of a domain D, denoted LENGTH(D), is defined by
e if D is not a character domain, LENGTH(D) = NO_LENGTH;

e if D is a character domain, LENGTH(D) = the value assigned by D to the length
base_domain_parameter.

The value assigned to the length parameter in the declaration of a character domain shall be
an integer from an implementation defined range.

Any domain_declaration or subdomain_declaration of an enumeration domain shall assign
an enumeration_reference to the base_domain_parameter enumeration and a
database_mapping to the base_domain_parameter map. If the map parameter is assigned
an enumeration_association_list, then

o Each enumeration_literal within the enumeration referenced by the
enumeration_reference given by the enumeration parameter shall appear as the
enumeration_literal of exactly one enumeration_association.

» No database_literal shall appear in more than one enumeration_association.

Note: These constraints ensure that the database_mapping is an invertible (i.e., one-to-one)
function. That function is used for both compile time and runtime data conversions. See
sections 4.1.1.3 and 4.3.

Let D be an enumeration domain or subdomain declaration and let En be the name of the
enumeration referenced by the value assigned by D to the enumeration
base_domain_parameter. D is said to assign the expression E to the enumeration literal
El, if D assigns the database_mapping M as the value of the map base_domain_parameter
and M

+ ispos,and E = En’Pos(El), or
o isimage, and E = En'Image(El), or

» is an enumeration_association_list containing an enumeration_association of the form
El=>E

See section 4.1.6.

The database_mapping of an enumeration domain or subdomain declaration D should
preserve the ordering implied by that domain’s enumeration_reference ER. That s, if L;
and L, are enumeration literals of ER such that L; occurs before L, in ER’s
enumeration_literal_list, then the value assigned to L; by D should be less than the value
assigned to Ly by D.

Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

14. A domain or subdomain is said to be not null only if it or any of its parent domains is
declared with the not null phrase. In that case no object of the domain can contain the null
value.

Ada Semantics

An instantiation of a pattern defined for the base domain of the domain being declared, as
described in section 4.1.1.2, shall appear within the Ada package specification corresponding to
the module within which the domain_declaration appears. If in the domain declaration:

domain DD Is new EE ...

EE is a base_domain_reference, then the domain_pattern is instantiated; if EE is a
domain_reference, the derived_domain_pattern is instantiated; for the subdomain declaration

subdomain FF iIs GG ...

the subdomain_pattern is used.
Examples:

The following examples illustrate the declaration of domains and have been annotated with
references to the appropriate clauses of the language definition. The base domains used in these
examples exist in the predefined definitional module SAMeDL _Standard, which appears in
Appendix A. The constant Max_SQL_Int is declared in the predefined definitional module
SAMeDL_System (see Appendix B). Both SAMeDL_Standard and SAMeDL_System are
assumed to be visible, as is the enumeration declaration Colors (see section 4.1.6).

domain Weight_Domain IS new SQL_Int (—4.1.3: #1a

First => 0, ~4.1.3: #5 and #8
Last => Max_SQL_Int); -~413: #$5and #8
domain City_Domain Is new SQL_Char (—-4.1.3: #1a
Length => 15); -413: #5and #10
domaln Color_Domain Is new SQL_Enumeration_As_Char (--4.1.3: #1a
enumeration => Colors, -4.13: #1t
map => image); -413: #11 and #12
domain Auto_Weight iIs new Weight_Domain (-413: #1b
Last => 10000); ~-413: #
subdomain Auto_Part Weight Is Auto_Weight (--4.1.3: #2
Last => 2000); -413: #5and #8

The declarations produce the following Ada code:

--the Ada code below is the instantiation of the domain pattern
- from the base domain SQL_int

type Weight_Domain_Not_Null is new SQL_Int_Not_Null

range 0 .. implementation_defined;
type Weight_Domain_Type I8 new SQL_Int;

Intermetrics, Inc. 27

SAMeDL Language Reference Manual

package Weight_Domain_Ops IS new SQL_Iint_Ops (
Weight_Domain_Type, Weight_Domain_Not_Null);

--the Ada code below is the instantiation of the domain pattern
-- from the base domain SQL_Char

type City_DomainNN_Base Is new SQL_Char_Not_Nuli;
subtype City_Domain_Not_Null Is City_DomainNN_Base (1 .. 15);
type City_Domain_Base Is new SQL_Char;
subtype City_Domain_Type Is City_Domain_Base (City_Domain_Not_Null'Length);
package City_Domain_Ops Is new SQL_Char_Ops
(City_Domain_Base, City_DomainNN_Base);

--the Ada code below is the instantiation of the domain pattern
- from the base domain SQL_Enumeration_As_Char

type Color_Domain_not_null Is new Colors;
package Color_Domain_Pkg Is new SQL_Enumeration_Pkg (Color_Domain_not_nuli);
type Color_Domain_Type Is new Color_Domain_Pkg.SQL_Enumeration;

--the Ada code below is the instantiation of the derived domain pattemn
- from the base domain SQL_Int

type Auto_Weight_Not_Null Is new Weight_Domain_Not_Null
range Weight_Domain_Not_Null'First .. 10000;

type Auto_Weight_Type Is new Weight_Domain_Type;

package Auto_Weight _Ops IS new SQL_Int_Ops (
Auto_Weight_Type, Auto_Weight_Not_Null);

--the Ada code below is the instantiation of the subdomain pattemn

- from the base domain SQL_Int

subtype Auto_Part_Weight_Not_Null is Auto_Weight_Not_Null
range Auto_Weight_Not_Null'First . . 2000;

type Auto_Part_Weight_Type IS new Auto_Weight_Type;

package Auto_Part_Weight_Ops Is new SQL_Int_Ops (
Auto_Part_Weight_Type, Auto_Part_Weight_Not_Nuli);

4.14 Constant Declarations

constant_declaration ::= constant Ada_identifier [: domain_reference]
I8 static_expression ;

static_expression ::= value_expression

A static expression is a value expression (see section 5.10) whose value can be calculated at
compile time; i.e., whose leaves are all either literals or constants.
Let K denote the constant declaration

constantC[:D]ISE;

28 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

1. DATACLASS(K) is DATACLASS(E), the data class of the static expression E.

2. 1f DATACLASS(K) is enumeration, then D shall be present in the constant declaration
and shall name an enumeration domain of which the static expression E is an enumeration
literal.

3. 1f DATACLASS(K) is character, then D shall be present.

4. If the domain_reference D is not present, then

a.
b.
c.

d.

C is a universal constant of type DATACLASS (K).

AdaTYPE(K) is an anonymous type, universal T, where T is DATACLASS(K).
if DATACLASS(K) is numeric, then SCALE(K) = SCALE(E).

DOMAIN(K) = NO_DOMAIN.

5. If the domain_reference D is present, then

a.

b.

d.

DOMAIN(K) = D and E shall conform to D.

If DATACLASS(K) is numeric, then SCALE(K) = SCALE(D), and SCALE(E) shall
not exceed SCALE(D).

If DATACLASS(K) is character, then LENGTH(K) = LENGTH(D) and LENGTH(E)
shall not exceed LENGTH(D).

AdaTYPE(K) is defined as the type name within D designated as not null bearing.

Ada Semantics

Let VALUE represent the function which calculates the value of a static_expression. Let SE be
a static_expression. VALUE(SE) is given recursively as follows:

1.

2.
3.

If SE contains no operators, then
a. If SE is a database_literal, then VALUE(SE) = SE.

b. If SE is an enumeration_literal of domain D, and D assigns expression E to that
enumeration literal, then VALUE(SE) =E.

c. If SE is a reference to the constant whose declaration is given by
constantC[D)IS E;

shen VALUE(SE) = VALUEC(E).

d. If SE is a reference to a parameter P from domain D, and D assigns the
expression E to P, then VALUE(SE) = VALUE(E).

If SE is D(SE1), where D is a domain name, then VALUE(D(SE{)) = VALUE(SE}).
If SE is +SE (or -SEj), then VALUE(SE) = +VALUE(SE1) (or -VALUE(SE)))

Intermetrics, Inc. 29

--

SAMeDL Language Reference Manual

4. If SE is SE;) op SE2 where op is an arithmetic operator, then VALUE(SE) =
VALUE(SE1) op VALUE(SE3) where op is evaluated according to the rules of SQL.

5. If SE is (SEy) then VALUE(SE) = (VALUE(SE})).
Again, let K denote the constant declaration

constant C[:D]IS E;
Let O be the Ada representation of VALUE(E). Then the Ada library package specification
corresponding to the module in which the constant declaration K above appears shall have an
Ada constant declaration of the form

C : constant [AdaTYPE (K)] :=Q;
The type designator AdaTYPE(K) is omitted from this declaration if it is an anonymous type.
Examples:
The following SAMeDL constant declarations

constant Zero is 0; -- a named number of type universal_int

constant Val : ValDomain I8 1; -- a constant value of ValDomain type
will produce the following Ada code:

Zero : constant = 0;

Val : constant VaiDomain_not_null =1,
4.1.5 Record Declarations

record_declaration ::= record Ada_identifier_1 [named_phrase] Is

component_declarations
end [Ada_identifier 2] ;

named_phrase ::= named Ada_identifier

component_declarations ::= component_declaration { component_declaration }

component_declaration ::= component { , component } : domain_reference [not null] ;

component ::= component_name [dblength [named_phrase]]

component_name ::= Ada_identifier
If present, Ada_identifier_2 shall be equal to Ado_identifier_1. Ada_identifier_1 is the name of
the record.
Let R be arecord declaration. Define AdaNAME(R) to be

1. The alias N, if the named_phrase named N appears in the declaration.

2. Row, otherwise.

30 Intermetrics, Inc.

.

Chapter 4 - Data Description Language and Data Semantics

Note: AdaNAME(R) is the default for the name of the row record formal parameter in the
parameter profile of any procedure which uses the declaration R. See Sections 5.2, 5.5 and 5.9.

Ada Semantics
The Ada library unit package specification corresponding to the module within which the
record_declaration R appears shall have an Ada record type declaration (called Ra4,4) defined as
follows:

1. The name of the record type RAda shall be Ada_identifier_1.

2. For some integer &, let the component_declarations of R be given by the sequence

components; : Dj [not null;]

for 1 <i <k, where components;j is given by the sequence

Cij [dblength;i [named Ni]- 11
where 1 <j <m; for some integer m; . Rag, shall be equivalent, in the sense of [Ada]
sections 3.2.10 and 3.7.2, to a record type whose components are given by the sequence

COMP; [DBleng;]

where i andj are bound as before and COMPij is given by

C;j T

where Tj is an Ada type name determined to be:

a. The not null-bearing type name within the domain D;, if either Dj is a not null
only domain or not null; is present in R;

b. Otherwise the null-bearing type name within the domain D;.
If the optional Jblengthij phrase is specified, then DBlengij appears and takes the form
DBLngNAME;i : Ada_Indicator_Type ;
where DBLngNAMEij is Nij if Ni; appears and is Ci; DbLength, otherwise;
Ada_Indicator_Type is the type SQL_Standard.Indicator_Type (see [ESQL] 8.3.3).
Examples:
The following SAMeDL record declaration

record Parts_Row_Record_Type named Parts_Row_Record Is
Part_Number : Pno_Domain not null;

Intermetrics, Inc. 31

SAMeDL Language Reference Manual

Part_Name : Pname_Domain;
Color : Color_Domain;
Weight_In_Ounce : Weight_Domain;
City : City_Domain;

end Parts_Row_Record_Type;

will produce the following Ada code:

type Parts_Row_Record_Type Is record -- Ada Semantics #1
Part_Number : Pno_Domain_not_null;, - Ada Semantics #2
Part_Name : Pname_Domain_Type;

Color : Color_Domain_Type;

Waeight . Weight_Domain_Type;

City : City_Domain_Type;
end record;

4.1.6 Enumeration Declarations

Enumerations are used to declare sets of enumeration literals for use in enumeration domains and
status maps (see secticns 4.1.3 and 4.1.8).

enumeration_declaration ;.= enumeration Ada_identifier_1 I8 (enumeration_literal_list) ;

enumeration_literal_list::= enumeration_literal { , enumeration_literal }

1. Ada_identifier_1 is the name of the enumeration.

2. Each identifier within an enumeration_literal_list is said to be an enumeration literal of the
enumeration. The enumeration_declaration is considered to declare each of its
enumeration_literals. An enumeration_literal may appear in multiple enumeration
declarations.

Ada Semantics

There shall be, within the Ada package specification corresponding to the module within which
an enumeration appears, an Ada enumeration type declaration of the form

type Ada_identifier 1 Is (enumeration_literal_list) ;

Note: Ada character literals shall not be used in enumerations.

Examples:

The following are examples of SAMeDL enumeration declarations.
enumeration Sizes Is (small, medium, large, x_large);
enumeration Sex I8 (M, F);
enumeration Operation_Status Is (Disk_Error,

Data_Conversion_Emor, Invalid_SQL_Statement, Not_Found);
enumeration Colors Is (Purple, Blue, Green, Yellow, Orange, Red, Black, White) ;

32 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

For the declarations above, the following Ada code would be produced:

type Sizes Is (small, medium, large, x_large);
type Sex Is (M, F); : .
type Operation_Status is (Disk_Error,
Data_Conversion_Error, Invalid_SQL_Statement, Not_Found);
type Colors Is (Pumple, Blue, Green, Yellow, Orange, Red, Black, White) ;

4.1.7 Exception Declarations

exception_declaration ::= exception Ada_identifier ;

Ada_identifier is the name of the exception.
Ada Semantics

There shall be, within the Ada package specification corresponding to the module within which
an exception declaration appears, an exception declaration of the form

Ada_identifier_1 : exception;

Examples:
The following are examples of exception declarations.

exception Data_Definition_Does_Not_Exist;
exception Insutficient_Privilege;

The above declarations produce the following Ada code:

Data_Definition_Does_Not_Exist : exception;
insufficient_Privilege : exception;

4.1.8 Status Map Declarations

The execution of any procedure (see sections 3.7, 5.2, and 5.5) causes the execution of an SQL
procedure. That execution causes a special parameter, called the SQLCODE parameter, to be set
to a status code that either indicates that a call of the procedure completed successfully or that an
exception condition occurred during execution of the procedure. Status maps are used within
abstract modules to process the status data in a uniform way. Each map defines a partial function
from the set of all possible SQLCODE values onto (1) enumeration literals of an enumeration
and (2) raise statements. Note: The function is DBMS specific in that SQLCODE values are not
specified by standard SQL, whereas the enumeration type and exceptions are not specific to any
DBMS.

status_map_declaration ::= status Ada_identifier_1
[named_phrase]
[uses target_enumeration]
I8 (sqlcode_assignment { , sqlcode_assignment) ;

target_enumeration ::= enumeration_reference | boolean

Intermetrics, Inc. 33

SAMeDL Language Reference Manual

sqlcode_assignment ::= static_expression_list => enumeration_literal |
static_expression_list => raise exception_reference

static_expression_list ::= static_expression { , static_expression } |
static_expression .. static_expression

1. Ada_identifier_1 is the name of the status map.

2. A target enumeration of boolean is a reference to the predefined Ada enumeration type
Standard.Boolean.

3. If the optional uses clause is not present, then only sqlcode_assignments that contain raise
shall be present in the status_map_declaration.

4. Every Ada_enumeration_literal within an sqlcode_assignment shall be an
Ada_enumeration_literal within the enumeration referenced by the target_enumeration.

5. KE=>L (or E => raise X) is an sglcode_assignment then
o DATACLASS(E) = Integer .

e« If E =>L'(or E' => raise X') is any other sqlcode_assignment within the
status_map_declaration, then E and E' shall not evaluate to the same integer.

Note: An sqlcode_assignment takes the form of a list of alternatives as found in Ada case
statements, aggregates, and representation clauses. The others choice is not valid for
sqlcode_assignments, however.

Note: SAMeDL_Standard contains the definition of a status map Standard_Map, defined as
follows:

status Standard_Map named Is_Found uses boolean is
(0 => True, 100 => False);
Standard_Map is the status map for those fetch statements that appear in cursor declarations by
default (see section 5.5). It signals end of table by returning false.

Examples:

status Operation_Map named Result_Of Operation
uses Operation_Status is (

-600 .. -699 => Disk_Error,

-500 .. -599 => Data_Conversion_Error,

-300 .. 499 => Invalid_SQL_Statement,
-101,-110,-113 => raise Data_Definition_Does_Not_Exist,
-25 => ralse Insufficient_Privilege,

100 => Not_Found);

4.2 Schema Modules

Schema modules contain the database description.

34 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

schema_module ::= [context]
[extended]
schema module SQL_identifier_1 is
{ schema_element)
end [SQL_identifier_2] ;

schema_element ;.= table_definition |
view_definition |
SQL_privilege_definition |
extended_schema_element

SQL_privilege_definition ::= (see [SQL] 6.10)

1. If present, SQL _identifier_2 shall be equal to SQL_identifier_1. SQL _identifier_1 is the
name of the schema_module.

2. SQL_identifier_1 shall be different from any other schema module name.

3. An extended_schema_element may appear in a schema_module only if the keyword
extended appears in the associated schema module declaration.

4.2.1 Table Definitions

Table definitions are analogous to SQL table declarations in that they provide information
concerning the underlying structure of a database table within a schema.

table_definition ::= [extended] table SQL_identifier_1 is
table_element { , table_element)
end [SQL_identifier 2] ;
table_element ::= column_definition '
table_constraimt_definition |
extended_table_element
column_definition ::= SQL_column_name [SQL_data_type]
[SQL_default_clause]
[column_constraint] : domain_reference
SQL_detault_clause ::= (see [SQL]6.4)
column_constraint ::= not null SQL_unique_specification |
SQL_reference_specification |
check (search_condition)
SQL_unique_specification ::= (see [SQL] 6.6)
SQL_reterence_specification ::= (see [SQL] 6.7)
table_constraint_definition ::= SQL_unique_constraint_definition |
SQL_referential_constraint_definition |
check_constraint_definition
SQL_unique_constraint_definition ::= (see [SQL] 6.6)

SQL_reterential_constraint_definition ::= (see [SQL] 6.7)

Intermetrics, Inc. . 35

SAMeDL Language Reference Manual

check_constraint_definition ::= check (search_condition)
1. If present, SQL _identifier_2 shall be equal to SQL_identifier_1. SQL_identifier_1 is the
name of the table and the table_d;ﬁnition.

2. The name of the table_definition must be different from the name of any other
table_definition or view_definition within the enclosing schema_module.

3. A table_definition shall contain at least one column_definition.

4. Every SOL column_name shall be distinct from every other SQL_column_name within the
enclosing table_definition.

5. If the column_constraint is absent from a column_definition, then the domain_reference
shall not be to a not null only domain.

6. For the semantics of not null, see [SQL], sections 6.3 and 6.6; for the semantics of check,
see [SQLY], sections 6.3 and 6.8.

7. Suppose that column_definition CD is of the form
CN [DT) [DC] [CC] : D;

a. The domain of CD, denoted DOMAIN(CD), is D. If DT is present, then conversion
between DBMS_TYPE(D) (see section 4.1.3) and DT shall be legal in both directions
by the rules of SQL ([SQL]J, section 8.6, syntax rule 3; section 8.7, syntax rule 6; etc.)
unless DBMS_TYPE(D) is an implementation defined dbms_type (see section 4.1.1.3),
in which case both conversions must be legal by the implementation defined rules.

b. Define DATACLASS(CD) as DATACLASS(D).

¢. Define LENGTH(CD) as LENGTH(D)

d. Define SCALE(CD) as SCALE(D).

8. If extended appears in a table_definition then extended shall also appear in the associated
schema_module declaration.

9. If an extended_table_element appears in a table_definition, then the keyword extended
shall appear in that table_definition.

4.2.2 View Definitions
view_definition ::= [extended] view SQL_identifier_1 as query_spec
[with check option]
end [SQL_identifier 2] ;

query_spec ::= query_specification | extended_query_specification

36 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

1. If present, SQL_identifier_2 shall be equal to SQL_identifier_1. SQL _identifier_1 is the
name of the view and the view_definition.

2. The name of the view_definition shall be different from the name of any other
table_definition or view_definition in the enclosing scherna module.

3. A query_spec may be an extended_query_specification only if the keyword extended
appears in the associated view_definition.

Examples:

with Def_Mod; use Def_Mod;

schema module Parts_Suppliers_Database is

-421:#1 and #2

-421: #3 and #4
—-421: #5

--the Parts table

table P Is
Pno -not null : Part_Domain,
Pname : Pname_Domain,
Color : Coler_Domain,
Weight : Weight_Domain,
City . City_Domain,
unique (Pno)

end P;

--the Suppliers table
table S is

‘Sno not null
Sname
S§tatus
unique (Sno)

end S;

--the Orders table
table SP is

Sno character(5) not null
Pno character(6) not null

Qty integer
unique (Sno, Pno)
end SP;

--the Part_Number_City view
view Pno_City as

select distinct Pno, City
from SP, S
where SP.Sno = S.Sno
end Pno_City;

end Parts_Suppliers_Database;

Intermetrics, Inc.

: Sno_Domain,
: Sname_Domain,
: Sstatus_Domain,
City : City_Domain,

-421: #1 and #2
~-421: #3 and #4

-421: #5
-- "Status” is a reserved word

-421: #1 and #2

: Sno_Domain, ~-421: #3 and #4
: Pno_Domain,
: Quantity_Domain, -—-4.2.1: #5

-422: #1 and #2

37

SAMeDL Language Reference Manual

4.3 Data Conversions

The procedures that are described in an abstract module (see Chapter 5) transmit data between an
Ada application and a DBMS. Those data undergo a conversion during the execution of those
procedures. Constants and enumeration literals used in statements are replaced by their database
representation in the form of the statement in the concrete module. This process occurs at
module compile time. Both processes are described in this section.

Execution Time Conversions

The execution time conversions check for and appropriately translate null values; for not null
values, the conversion method identified by the appropriate base domain declaration (see section
4.1.1.3).

Input parameter conversion rule. If the type of an input parameter is null-bearing, then in the
corresponding SQL procedure there is an associated SQL_parameter_specification to which an
SQOL indicator_parameter has been assigned (see sections 5.6 and 5.8). If, for any execution of
the procedure, the value of the input parameter is null, then the indicator parameter is assigned a
negative value (see [SQL], subsection 4.10.2 and section 5.6, general rule 1). Otherwise, the
indicator parameter shall be non-negative and the SQL parameter shall be set from the input
parameter by the conversion process identified for the base domain. If the type of an input
parameter is not null-bearing, the SQL parameter shall be set from the input parameter by the
conversion process identified for the base domain (see section 4.1.1.3).

Output parameter conversion rule. For output parameters of procedures containing either
fetch or select statements, this process is run in reverse. Let SP be a select parameter. Then the
corresponding SQL procedure has a data parameter and an indicator parameter parameter
corresponding to SP (see sections 5.2, 5.5, and 5.7). For any execution of the procedure:

» If the indicator parameter is negative, then

-- If the type of the Ada record component COMPada(SP) (see section-5.2 and
5.5) is null-bearing, then COMPA4,(SP) is set to the null value; élse .

- If the type of COMPA 4a(SP) is not null-bearing, the exception
SAMeDL_Standard.Null_Value_Error is raised.

» If the indicator parameter is non-negative, then the value of COMPA3a(SP) is set from
the value of the SQL data parameter by the conversion process identified for the base
domain (see section 4.1.1.3). If the record component DBLengada(SP) is present (see
section 5.2 and 5.4), then it is set to the valus of the indicator parameter.

Compile Time Conversions

The SQL semantics of constants, domain parameters, and enumeration literals (and constants that
evaluate to enumeration literals) used in value lists of insert statements (see section 5.8) and
value expressions (see section 5.10) require that they be replaced in the generated SQL code by
representations known to the DBMS. For enumeration literals, the enumeration mapping is used
(see sections 4.1.1.1, 4.1.1.3, and 4.1.3).

LetV bc an identifier. If V is not a reference to a constant or an enumeration literal, then V is
not static and undergoes no compile time conversion.

38 Intermetrics, Inc.

Chapter 4 - Data Description Language and Data Semantics

If V is a reference to
» aconstant declared by
constant C[: D}IS E;

+ adomain parameter param of domain D, and D assigns the expression E to param (see
section 4.1.3)

e or an enumeration literal E/ from enumeration domain D (see sections 5.3, 5.8, 5.10,
and 5.11), and D assigns the expression E to V,

then V is replaced by the static expression SQLvE(E) (see section 5.10).

Intermetrics, Inc. 39

Chapter 5 - Abstract Module Description Language

Chapter 5 Abstract Module Description Language
51 Abstract Modules

abstract_module ::= [context]
[extended]
abstract module Ada_identifier_1 Is
authorization schema_reference
{ definition }
{ procedure_or_cursor }
end [Ada_identifier_2] ;

procedure_or_cursor ::= cursor_declaration | procedure_declaration

1. If present, Ada_identifier_2 shall be equal to Ada_identifier_1. Ada_identifier_1 is the
name of the abstract module.

2. No two of the items (that is, procedures, cursors, and definitions) declared within an
abstract module shall have the same name.

3. For the meaning of "authorization schema_reference", see [SQL].

4. A procedure_or_cursor may be an extended procedure or an extended cursor only if the
keyword extended appears in the abstract module declaration.

Ada Semantics

For each abstract module within a compilation unit there is a corresponding Ada library unit
package the name of which is the name of the abstract module, that is Ada_identifier_1. The
Ada construct giving the Ada semantics of each procedure, cursor, or definition within an
abstract module is included within the specification of that library unit package.

SQL Semantics

There is an SQL module associated with each abstract module that gives the SQL semantics of
the abstract module. The name of the SQL module is implementation defined. The language
clz;yse of the SQL module shall specify Ada. The module authorization clause is implementation
defined.

5.2 Procedures

This section discusses procedures which are not associated with a cursor. Cursor procedures are
discussed in Section 5.5.

For every procedure declared within an abstract module there is an Ada procedure declared
within the library unit package specification corresponding to that abstract module and an SQL
procedure declared within the corresponding SQL module (see Section 5.1). A call to the Ada
procedure results in the execution of the SQL procedure.

procedure_declaration ::= [extended]

procedure Ada_identifier_1
[input_parameter_list]

Intermetrics, Inc. 41

SAMeDL Language Reference Manual

statement ::= commit_statement

is
statement
[status_clause]

delete_statement .
insert_statement_values
insert_statement_query
rollback_statement
select_statement
update_statement
extended_statement

Ada_identifier_1 is the name of the procedure.

2. Aninput_parameter_list may appear only in conjunction with statements which take input
parameters or with extended statements. In particular, such lists may not appear in
procedures containing a commit, rollback, or insert values statement.

3. A statement may be an extended_statement only if the keyword extended appears in the
procedure declaration. '

Ada Semantics

Each procedure declaration P shall be assigned an Ada procedure declaration Pag, in a manner
which satisfies the following constraints:

If P is declared within the declaration of an abstract module M, then Pag, is declared
directly within the library unit package specification M.

The simple name of Pag, is the name of P.

The parameter profile of the Ada procedure is defined as follows:

42

1. If the statement within the procedure is either a delete, insert_statement_query, select or

update statement, then let there be k input parameters (for some k£ = 0) in the input
parameter list given by INPj, INP2, ..., INPx. Then the ith parameter in the
Ada_formal_part of PAda denoted PARM p 4,(INP;) for i<=k, takes the following form
(see Section 5.6):

AdaNAME(INP;) : in AdaTYPE (INP)

. If the statement within the procedure is a select_statement, then the (k+1)st parameter in

the Ada formal part of Pada is a row record. The mode of the row record parameter
shall be in out.

Let IC be the into_clause appearing (possibly by assumption, see section 5.3) in the
select_statement. Then the name of the row record parameter is PARMRow(IC); the
name of the type of that parameter is TYPERow(IC) (see Section 5.9). If IC contains
the keyword new, then the declarative region containing the declaration of Paog4, shall
also contain the declaration of TYPERqow(IC).

Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

The names, types and order of the components of the row record parameter are
determined from the select_list within the select_statement. Let that list be given by
SPy, SPy, ..., SPm. (If the select_list takes the form '*' then assume the transformation
described in Section 5.7 has been applied). Then the row record type is equivalent in
the sense of [Ada], section 3.2.10 and 3.7.2, to a record whose sequence of components
is given by the sequence

... COMPAga(SP;) [DBlengaga(SPi)]

where COMPa 42(SPj) is given by

AdaNAME(SP;) : AdaTYPE(SP;))

provided that AdaNAME(SP;) and AdaTYPE(SP;) are defined (see Section 5.7). The
record component COMPA4a(SP;) is otherwise undefined. The record component
DBLengada(SPj) is given-by

DBLngNAME(SP;) : Ada_lndicator_Type

where Ada_Indicator_Type is the type SQL_Standard.Indicator_Type (see [ESQL]
section 8.3.a), provided that DBLngNAME(SP;) is defined; otherwise this component
is not present.

Note: COMPA4 4a(SPj) is undefined only if the ith select parameter is improperly

written; whereas DBLengada(SP;) is undefined only if the ith select parameter does not
have a dblength phrase (see section 5.7).

3. If the statement within the procedure is an insert_statement_values and it is not the
case that the insert_value_list is present and consists solely of literals and constants,
then the first parameter is a row record. The mode of the record parameter is in.

Let IC be the insert_from_clause appearing (possibly by assumption, see section 5.3)
in the statement. Then the name of the row record parameter is PARMRow(IC); the
name of the type of that parameter is TYPERow(IC) (see Section 5.9). If IC contains
the keyword new, then the declarative region containing the declaration of Pag4, shall
also contain the declaration of TYPERow(IC).

The names, types and order of the components of the record type are determined from
the insert_column_list and insert_value_list. Let Cy, C2 ..., Cy be the result of insert
columns appearing in an insert_column_list such that the corresponding element of the
insert_value_list is not a literal or constant reference. Then the row record type is
equivalent in the sense of [Ada], section 3.2.10 and 3.7.2, to the record whose ith record
component COMPA4,(G;) for 1 <i <m, is given by

AdaNAME(C;) : AdaTYPE(Cj)
(see Section 5.8).
4. If the statement within the procedure is an extended_statement, see section 3.7; for

extended parameter lists, see section 5.6.

Intermetrics, Inc. 43

SAMeDL Language Reference Manual

S.

For all procedures, regardless of statement type, if a status_clause appears in the
procedure declaration, then the final parameter is a status parameter of mode out. For
the name and type of this parameter see Sections 4.1.8 and 5.13.

SQL Semantics

Each procedure declaration P shall be assigned an SQL procedure PsqL within the SQL module
for the abstract module in which the procedure appears. PsqL has three parts:

1.
2.

3.

An SQL_procedure_name . This is implementation defined.

A list of SQL_parameter_declarations. An SQLCODE parameter is declared for every
SQL procedure. Other parameters depend on the type of the statement within the
procedure P.

a. If the statement is a delete, insert_statement_query, select or update statement,
then the SQL parametets derived from the input_parameter_list of the
procedure, as described in Section 5.6, appear in the parameter declarations of
PsqL

b. If the statement is an insert_statement_values, then the SQL parameters are
determined by the subsequence of insert_column_specifications in the
insert_column_list whose corresponding entry in the insert_value_list is a
column_name (thus not a literal or constant reference). See Section 5.8.

c. If the statement is a select_statement, then the SQL parameter declarations for
PsqL are determined by the select_list of the select_statement, as described in
Section 5.7.

d. If the statement is an extended_statement, see section 3.7.

An SQL_SQL_Statement (see [SQLY], section 7.3). This is derived from the statement
in the procedure declaration. See Section 5.3.

Interface Semantics

? call to the Ada procedure Pada shall have effects which can not be distinguished from the
ollowing.

1.

The procedure PsqL is executed in an environment in which the values of parameters
PARMgQL(INP) and INDICsqQL(INP) (see Section 5.6) are set from the value of
PARMA4a(INP) (see Ada Semantics above) according to the rule for input parameters
of section 4.3. This holds for every input parameter INP in the input_parameter_list of
the procedure or for every column parameter INP in the insert_column_list of an
insert_statement_values whose corresponding entry in the insert_column_list is an
SQL_column_name (thus not a literal or constant_reference). See Section 5.8.

Standard post processing, as described in section 3.6, is performed.

If the value of the SQLCODE parameter is zero or an implementation defined value
which permits the transmission of data (and which is handled by an
sqlcode_assignment, see section 3.6), and the statement within the procedure is a
select_statement, then the value of the component of the row record parameter
COMPAda(SP;j) and DBLengaga(SP;) are set from the values of the actual parameters

Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

associated with the SQL formal parameters PARMsQL(SP;) and INDICsqL(SPy) (see
Section 5.7), according to the rule for output parameters of section 4.3..

Examples:

The following are examples of procedure declarations. The first is a declaration of a procedure
with no input parameters.

procedure Parts_Suppliers_Commit Is
commit work;

The above declaration produces the following Ada procedure declaration in the abstract
interface.

procedure Parts_Suppliers_Commit;

The next procedure declaration contains an input parameter and a status clause.

procedure Delete_Parts (
Input_Pname named Part_Name : Pname_Domain)
is
delete from P
where Pname = Input_Pname
status Operation_Map named Delete_Status

.
'

The above declaration produces the following Ada procedure specification in the abstract
interface:

procedure Delete_Parts (
Part_Name : In Pname_Domain_Type;
Delete_Status : out Operation_Status);

In a somewhat more complex example, involving a row record, the following SAMeDL
procedure

procedure Insert_Redparts is
insert Into P (
Pno named Part_Number,
Pname named Part_Name,
Color,
City)
from Red_Parts
values (
.. Pno,
we Pname,
i '‘Red’,
City);

Intermetrics, Inc. 45

I

SAMeDL Language Reference Manual

produces the following Ada declarations:

type Insert_Redparts_Row_Type -~52, Ada semantics #3, 8.9
Is record .
Part_Number : Pname_Domain_Type; --4.2.1
Part_Name : Pname_Domain_Type;
City : City_Domain_Type;
end record;

procedure Insert_Redparts (Red_Parts : In Insert_Redparts_Row_Type);

The color of all parts inserted using the Insert_Redparts procedure will be red. The weight of all
such parts will be null. See the examples in section 4.2.2. The number, name and city of those
parts are specified at run time. '

5.3 Statements

This section describes the concrete syntax of statements other thz~ cursor oriented statements,
and defines the text of the SQL statement derived from the text of a SAMeDL statement.

commit_statement ::= commit work
rollback_statement ::= roliback work

delete_statement ::= delete from table_name
[where search_condition]

insert_statement_query ::= Insert into table_name [(SQL_insert_column_list)]
query_specification

insert_statement_values ::= insert into table_name [(insert_column_list)]
[insert_from_clause] values [(insert_value_list)]

update_statement ::= update table_name _ .
set set_item { , set_item)

[where search_condition]
set_item ::= column_refe.ience = update_value
update_value ::= null | value_expression
select_statement ::= select | distinct | all] select_list

[into_clause]

from_clause

[where search_condition]

[SQL_group_by_clause]

[having search_condition]
SQL_insert_column_list ::= column_name { , column_name }

SQL_group_by_clause ::= group by-column_reference {, column_reference }

In the following discussion, let ProcName be the name of the procedure in which the statement
appears.

46 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

Ada Semantics

1.

If no insert_from_clause appears within an insert_statement_values, then the following
clause is assumed: ‘

from Row : new ProcName_Row_Type

If an insert_from_clause which does not contain a record_id appears in an
insert_statement_values, the record_id

: new ProcName_Row_Type

is assumed. See Section 5.9.

If no into_clause appears within a select_statement, then the following clause is
assumed:

into Row : new ProcName_Row_Type

If an into_clause which does not contain a record_id appears in a select_statement, the
record_id

: new ProcName_Row_Type

is assumed. See Section 5.9.

The following rule applies to both forms of insert statements. If an insert_column_list
is not present in such a statement, then a column list consisting of all columns defined
for the table denoted by SQL _table_name is assumed, in the order in which the columns
were declared ([SQL] 8.7.3).

Note: Use of the empty insert_column_list is considered poor programming practice.
The interpretation of the empty insert_column_list is subject to change with time, as the
database design changes.- Programs which use an empty insert_column_list may cease
functioning where a program supplying an insert_column_list would continue to
operate correctly.

If the statement is an insert_statement_values, then

a. If the insert_value_list is not present, then a list consisting of the sequence of
column names in the insert_column_list is assumed.

b. The _inscrt_column_list and insert_values_list must conform, as described in
Section 5.8.

If the statement is an insert_statement_query, then let Cj, C3 ..., Cyy be the columns
appearing in an SQL_insert_column_list, and for each 1 € i £ m, let D; be
DBMS_TYPE(C;) (see section 4.2). The select_parameters in the select_list of the
query_specification shall not specify a named_phrase or a not null phrase; that is, the
select_list shall have the form VE,, VEy, ..., VE,, for value_expressions, VE;. Then

Intermetrics, Inc. 47

SAMeDL Language Reference Manual

* m = n, that is, the lists have the same length; and
e For each 1 £ 1 £ n, VE; shall conform to D; (see section 3.5) and if
DATACLASS(Dj) lS character, then LENGTH(VE;) shall not exceed
LENGTH(D;).
6. The following applies to update statements. Let

C=v

be a set_item within an update_statement. Let D be DOMAIN(C). Then
a. Ifvis the null literal, then D shall not be defined as a non-null bearing domain.

b. Otherwise, v is a value_expression. v shall conform to D (see section 3.5) and if
DATACLASS(D) is character, LENGTH(v) shall not exceed LENGTH(D).

SQL Semantics

The text of an SQL statement corresponding to 2 SAMeDL statement within a procedure is
described below.

1. The SAMeDL and SQL commit and rollback statements are textually identical.

2. The SAMeDL delete_statement is transformed into an SQL_delete_statement_searched
by applying the transformation SQLgc described in Section 5.11 to the search condition
of the where clause, if present. The remainder of the statement is unchanged.

3. The SAMeDL insert_statement_query is transformed into an SQL _insert_statement by

a. Applying the transformation SQLvE defined in Section 5.10 to the
value_expression in each select parameter of the sclect list in the
query_specification.

b. Removing any as keywords, if present, from the from_clause in the
query_specification.

c. Applying the transformation SQLgsc described in Section 5.11 to the
search_conditions, if any, in the query_specification.

The remainder of the statement is unchanged.

4. The SAMeDL insert_statement_values is transformed into an SQL_insert_statement by
transforming the insert_values_list and insert_column_list as described in Section 5.8,
and dropping the insert_from_clause, if present. The remainder of the statement is
unchanged.

5. The SAMeDL update_statement is transformed into an
SOL_ updatc statement_searched by applying the transformation SQLvyE to the value
expressions in the set_items of the statement and by applying the transformation SQLsc
to the search condition, if present. The remainder of the statement is unchanged.

6. The SAMeDL select_statement is transformed into an SQL_select_statement by

48 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

a. Replacing the select_list with the SQL _sclect_list described in Section 5.7;

b. Inserting an SQL into clause with a target list as specified in Section 5.7, and
removing the into_clause in the statement, if any;

c. Removing any as keywords, if present, from the from_clause.

d. Applying the transformation SQLgc described in Section 5.11 to the search
conditions, if any, in the where and having clauses.

The remainder of the statement is unchanged.

5.4 Cursor Declarations

cursor_declaration ::= [extended) cursor Ada_identifier_1
[input_parameter_list]
for

query
[SQL_order_by_clause]

f Is cursor_procedures
end [Ada_identifier_2] ;)

query = query_expression | extended_query_expression

query_expression ;= query_term |
query_exprassion union [all] query_term

query_term = query_specification |
(query_expression)

query_specification ::= select [distinct | all] select_list
from_clause
[where search_condition]
[SQL_group_by_clause]
[having search_condition]

SQL_order_by_clause ::= order by SQL_sont_specification { , SQL_sort_specification }

SQL_sort_specification ::= Unsigned_integer_literal [asc | desc] |
column_reference [asc | desc]

1. Ada_identifier_1 is the name of the cursor. If present, Ada_identifier_2 shall equal
Ada_identifier_1

2. No two procedures within a cursor_declaration shall have the same name.

3. A query may be an extended_query_expression only if the keyword extended appears in
the cursor declaration. If the keyword extended appears in the cursor declaration, then the
keyword extended shall appear in the declaration of the module in which the cursor is
declared.

Ada Semantics

If a cursor named C is declared within an abstract module named M, then there exists within the

Ada package M (see Section 5.1) a subpackage named C. That subpackage shall contain the

Intermetrics, Inc. 49

SAMeDL Language Reference Manual

declarations of the procedures declared in the sequence cursor_procedures. (Note: Some of
those procedures may appear by assumption. See Section 5.5). The text of the procedure
declarations is described in Section §.5.

If there is no union operator in the query_expression in the cursor_declaration, then the names,
types, and order of the components of any record type used as a row record formal parameter
type in any fetch procedure for this cursor are determined from the select_list as specified for the
select_statement in Sections 5.2 and 5.7. Otherwise, if union is present, the select_lists of all the
query_expressions in the cursor_declaration shall have the same length. The name and type of

the ith component of the record type is determined by the set of select_parameters in the ith
location of the select_lists. Let there be m such select_lists and let the set of select_parameters

appearing in the ith location of these lists be denoted by

{SPj;} = { VEj; [named Idj;] [not nullj;] [dblengthij;] [named dbldj;] } 1sjsm.
Then

1. These parameters have the same Ada type; that is, AdaTYPE(SP);) = AdaTYPE(SPk;)
for all pairs 1<j, k<m (see Section 5.7). The Ada type of the ith parameter, AdaTYPE;,
is that type; in other words, AdaTYPE; = AdaTYPE(SP};) for any 1<j<m. (Note: This
is equivalent to the restriction that DOMAIN(VE);) is the same domain, say DOMAIN;,

for all values of j (see Section 5.10) and that either (i) DOMALIN; is a not null only
domain, or (ii).not null is specified for either all or none of the parameters).

2. For all pairs j, k such that a named_phrase appears in SPJ; and SPK;, Idj; shall equal Id;.
Then that name, AdaNAME;, satisfies AdJANAME; = Idj; for any such j. If there are no
such pairs (that is, if a named phrase appears in none of the select_parameters), then
AdaNAME(VE};) shall equal AdaNAME(VEY;) for all pairs 1<j, k<m and shall not

equal NO_NAME (see Section 5.10). Then AdaNAME; = AdaNAME(VEj);) for any
jsm.

3. For all pairs j, k such that a dblength phrase appears in SPj; or SPk;, then a dblength
phrase shall appear in both SPJ; and SPX;. Furthermore, DBLngNAME(SPJ;) shall equal
DBLngNAME(SPkX;). Then DBLngNAME; shall be that name. If the dblength phrase

appears in no SPJ; for any j, then DBLngNAME; is said to be null; otherwise,
DBLngNAME,; is undefined.

The type of the row record parameter is equivalent in the sense [Ada] 3.2.10 and 3.7.2, to a
record type whose sequence of components is given by the sequence

... COMPa4a(SP;) [DBlengada(SP;) }

where COMPAa4a(SP;) is given by

AdaNAME(SP;) : AdaTYPE(SPj)

provided that AdaNAME(SP;) and AdaTYPE(SP;) are defined (see Section 5.7). The record
component COMP 4a(SPj) is otherwise undefined. The record component DBLengada(SPj) is
given by

50 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

DBLngNAME(SP) : Ada_Indicator_Type
where Ada_Indicator_Type is the type SQL_Standard.Indicator_Type (see [ESQL] section
8.3.a), provided that DBLngNAME(SP;) is defined; otherwise this component is not present.
SQL Semantics
A SAMeDL cursor_declaration is transformed into an SQL_cursor_declaration as follows.

1. The string “declare” is prepended to the cursor declaration.

2. The input_parameter_list and cursor_procedures are discarded, as is the keyword

cursor and the is ... end bracket. The cursor name Ada_identifier_1 is transformed

into SQLNAME(Ada_identifier_1).

3. The string “cursor” is inserted immediately after the transformed cursor name, but
before the keyword for.

4. The select_list is transformed into an SQL_select_list as described in Section 5.7.
5. Any as keywords present are removed from the from_clause.
6. The search conditions are transformed using the transform SQLgc of Section 5.11.
The remainder of the declaration is unchanged.
Examples:

Shown below are two examples of cursor declarations: .the first contains a simple cursor

declaration, while the second contains a more complex declaration which exercises many of the

features of the syntax. In both cases, the generated Ada code is shown.

The example below is a simple SAMeDL cursor declaration.

cursor Select_Suppliers
for
select Sno, Sname, Sstatus, City dblength
from S

This declaration produces the following Ada code:

package Select_Suppliers Is - 5.4: Ada Semantics
type Row Type is record --55, #5 and #8
: Sno_Domain_Type; -~-55, #3 and #8
Sname : Sname_Domain_Type;
Sstatus : Sstatus_Domain_Type;
City : City_Domain_Type;
City_Dblength : SQL_Standard.Indicator_Type;
end record;

procedure Open; -55

Intermetrics, Inc. 51

SAMeDL Language Reference Manual

procedure Fetch (-55, #5
Row : In out Row_Type; -5.5, #8 and Ada Semantics #3
Is_Found : out boolean); - 5.5, # and Ada Semantics #6
procedure Close; ~-55, #4

end Select_Suppliers;

The following is an example of a more complex cursor declaration.

cursor Supplier_Operations (
input_City named Supplier_City : City_Domain not null;
Adjustment named Status_Adjustment : Sstatus_Domain not null)

for
select Sno named Supplier_Number,
Sname named Supplier_Name,
Sstatus + Adjustment named Adjusted_Status,
City named Supplier_City
from S
where City = Input_City
is

procedure Open_Supplier_Operations Is
open Supplier_Operations;

procedure Fetch_Supplier_Tuple Is
fetch Supplier_Operations
into Supplier_Row_Record : new Supplier_Row_Record_Type
status My_Map named Fetch_Status;

procedure Close_Supplier_Operations Is
close; -- optional 'cursor name’ omitted

procedure Update_Supplier_Status (
input_Status named Updated_Status : Sstatus_Domain not nuil;
Input_Adjustment named Adjustment : Sstatus_Domain)
is
update S
set Sstatus = Input_Status + Input_Adjustment
where current of Supplier_Operations;

procedure Delete_Supplier Is
delete from S;
-- optional "where current of ‘cursor name™ omitted

end Supplier_Operations;

This declaration produces the following Ada code.

package Supplier_Operations Is --5.4, Ada Semantics
type Supplier_Row_Record_Type IS record --5.5, Ada Semantics #5 and #8
Supplier_Number : Sno_Domain_Type; --5.5, Ada Semantics #3 and #8
Supplier_Name . Sname_Domain_Type;

52 Intermetrics, Inc.

Chapter S - Abstract Module Description Language

5.5

Intermetrics, Inc.

Adjusted_Status : Sstatus_Domain_Type;

Supplier_City : City_Domain_Type;
end record; .
procedure Open_Supplier_Operations (
Supplier_City : In City_Domain_not_null; - 5.5, Ada Semantics
Status_Adjustment : In Sstatus_Domain_not_null); - #1, #3, Modes
procedure Fetch_Supplier_Tuple (
Supplier_Row_Record : In out Supplier_Row_Record_Type; -55
Fetch_Status : out Operation_Status); -55

procedure Close_Supplier_Operations;

procedure Update_Supplier_Status (
Updated_Status : in Sstatus_Domain_not_null; --5.5, Ada Semantics #2
Adjustment : In Sstatus_Domain_Type); -5.5, Ada Semantics

procedure Delete_Supplier;
end Supplier_Operations;

Cursor Procedures
cursor_procedures ::= cursor_procedure { cursor_procedure }

cursor_procedure ::= [extended] procedure Ada_identifier_1
[input_parameter_list] .

cursor_statement
[status_clause]

cursor_statement ::= open_statement |
fetch_statement |
close_statement |
cursor_update_statement |
cursor_delete_statement |
extended_cursor_statement

open_statement ::= open [Ada_identifier
fetch_statement ::= fetch [Ada_identifier t] [into_clause]
close_statement ::= close [Ada_identifier]
cursor_update_statement ::= update table_name -

set set_item { , set_item]
[where current of Ada_identifier]

‘cursor_delete_statement = delete from table_name

[where current of Ada_identitier]

Ada_identifier_1 is the name of the procedure.

53

SAMeDL Language Reference Manual

2. An input_parameter_list may only appear in conjunction with statements that take inpnt
parameters. In particular, such lists may not appear in conjunction with open, close, fetch
and cursor delete statements. Of the cursor procedures, only a cursor_update_statement
may take an input_parameter_list.

3. If no open_statement appears in a list of cursor_procedures, the declaration "procedure
open is open;" is assumed.

4. If no close_statement appears in a list of cursor_procedures, the declaration "procedure
close is close;" is assumed.

5. If no fetch_statement appears in a list of cursor_procedures, the declaration "procedure
fetch is fetch status Standard_Map;" is assumed. See Section 4.1.8.

6. If Ada_identifier is present in an open, fetch, close, cursor_update or
cursor_delete_statement, then it must be equal to the name of the cursor within which the
procedure declaration appears. The meaning of a cursor statement is not affected by the
presence or absence of these identifiers.

7. The restrictions which apply to the set_items of a non-cursor update_statement (see Section
5.3), also apply to the set items of a cursor_update_statement.

. 8. If no into_clause appears within a fetch_statement, then the following clause is assumed:
into Row : new Row_Type

If an into_clause which does not contain a record_id appears in a fetch_statement, the
record_id

: new Row_Type
is assumed. See Section 5.9.

9. A cursor_statement may be an extended_cursor_statement only if the keyword extended
appears in the cursor_procedure declaration. If the keyword extended appears in the
cursor_procedure declaration, then the keyword extended shall appear within the
declaration of the cursor in which 'the cursor_procedure is declared.

Ada Semantics

Each procedure declaration P which appears in or is assumed to appear in a cursor_procedures
list shall be assigned an Ada procedure declaration Paga which satisfies the following
constraints.

o If Pis declared within the declaration of a cursor named C, then Pag, shall be declared
within the specification of an Ada subpackage named C.

» The simple name of Ppg, is the mame of P.

The parameter profiles (Ada formal parts) of the Ada procedures depend in pa.rt on the statement
within the procedure, as follows:

54 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

1. For open_statements: Let INPj, INP,, ..., INPx k>0 be the list of input parameters in
the input_parameter_list of the cursor_declaration within which the procedure appears.

Then PARMA4a(INP), the ith parameter of the Ada_formal _part, is of the form
AdaNAME(INP;) : in AdaTYPE(INP;)
for 1<i<k (see Section 5.6).

2. For cursor_update_state.ments: Let INPj, INPy, ..., INPx k>0 be the list of input

parameters in the input_parameter_list of the statement. Then PARMj4,(INP;), the ith
parameter of the Ada_formal_part, is of the form

AdaNAME(INP;) : in AdaTYPE(INP;)
for 1<i<k (see Section 5.6).

3. For fetch_statements: The first parameter is a row record parameter of mode in out.
The names, order and types of the components of the type of this parameter are
described in Sections 5.2 and 5.4. Let IC be the into_clause of the fetch_statement.
Then the name of the row record formal parameter is PARMRqw(IC), and the name of
the type of that parameter is TYPERow(IC). See Section 5.9. If IC contains the
keyword new, then the declarative region containing the declaration of Ppg, shall
contain the declaration of TYPERqw(1C).

4. For close and cursor_delete_statements: There are no parameters to these procedures
(except possibly for the status parameter, see below).

5. For all statement types: if a status_clause referencing a status map that contains a uses
appears in the procedure declaration, then the final parameter is a status parameter of
mode out. For the name and type of this parameter see Sections 4.1.8 and 5.13.

SQL Semantics

Each procedure P which appears in or is assumed to appear in a cursor_procedures list shall be
assigned an SQL procedure Psqp within the SQL module for the abstract module within which
the cursor_procedures list appears. Pgqr has three parts:

1. An SQL_procedure_name. This is implementation defined.

2. A list of SQL_parameter_declarations. An SQLCODE parameter is declared for every
SQL procedure. Other parameters depend on the type of the statement within the
procedure P.

a. If the statement is an open_statement, then the SQL parameters derived from the
input_parameter_list of the cursor_declaration as described in Section 5.6
appear in the parameter declarations of PsqL.

b. If the statement is a cursor_update_statement, then the SQL parameters derived

from the input_parameter_list of the cursor_update_statement as described in
Section 5.6 appear in the parameter declarations of PsqL.

Intermetrics, Inc. 55

SAMeDL Language Reference Manual

C.

If the statement is a fetch_statement, then the SQL parameters determined by
the select_list of the cursor_declaration as described in Section 5.7 appear in the
parameter declarations of PsqL.

The order of the parameters within the list is implementation defined.

3. An SQL_SQL_statement. This is derived from the statement in the procedure
declaration, as follows.

a.

If the statement is an ;)pen_statement, then the SOL_open_statement is "open
SQLNAME(C)", where C is the curser name.

If the statement is a close_statement, then the SQL close statement is "close
SQLNAME(C)", where C is the cursor name.

If the statement is the cursor_delete_statement
delete from id [where current of C]

then the SQL_delete_statement_positioned is identical, up to the addition of the
where phrase: "where current of SQLNAME(C)", replacing the where phrase
of the cursor_delete_statement, if present.

If the statement is the cursor_update_statement

update id
set set_items
[where current of C]

then the SQL_update_statement_positioned is formed by applying the
transformation SQLvE defined in Section 5.10 to the value expressions in the
set_items of the statement and appending or replacing the where phrase so as to
read "where current of SQLNAME(C)".

If the statement is a 'fctch_étatemcnt, then the SQL_fetch_statement is "fetch
SQLNAME(C) into target_list" where C is the cursor name and target list is
described in Section 5.7.

Interface Semantics

A call to the Ada procedure Pp4, shall have effects which can not be distinguished from the
following.

56

1. The procedure PsqL is executed in an environment in which the values of parameters
PARMsqL(INP) and INDICsqL(INP) (see Section 5.6) are set from the value of
PARMA4a(INP) (see Ada semantics above) for every input parameter, INP; in either the
input_parameter_list of the cursor_declaration, for open procedures, or the
input_parameter_list of the procedure itself, for update procedures.

2. Standard post processing, as described in section 3.6 is performed.

3. If the value of the SQLCODE parameter is zero or an implementation defined value
which permits the transmission of data (and which is handled by an
sqlcode_assignment, see section 3.6),, and the statement within the procedure is a

Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

fetch_statement, then the value of the row record components COMPA 4a(SP;) and
DBLengada(SP;), are setfrom the values of the actual parameters associated with the
SQL formal parameters PARMsQL(SPi) and INDICsqQL(SPy) (see Section 5.7).

5.6 Input Parameter Lists

Input parameter lists declare the input parameters of the procedure or cursor declaration in which
they appear. The list consists of input parameter declarations which are separated with semi-
colons, in the manner of Ada formal parameter declarations.

Each parameter declaration of a procedure P is represented as an Ada_parameter_specification
within the Ada_formal_part of the procedure Pad,; each parameter declaration within a cursor
declaration is represented as an Ada_parameter_specification within the Ada_formal_part of the
Ada open procedure. The parameter is also represented as either one or two
SQL_parameter_declarations within the SQL_procedure PsqL. The second SQL parameter
declaration, if present, declares the indicator variable for the parameter ([SQL) 4.10.2).

The order of parameter specification within the Ada_formal_part is given by the order within the
input_parameter_list. The order of the SQL_parameter_declarations within the list of
declarations in the SQL procedure is implementation defined.

input_parameter_list ::= (parameter { ; parameter })

input_parameter ::= Ada_identifier_1 [named_phrase] :
[In] [out] domain_reference [not null }

Ada Semantics

Let INP be a parameter the textual representation of which is given by
id_1 [named id_2] :[In][out] [id_3.] id_4 [not nuli]

Then id_1 is the name of the parameter.

The domain associated with INP, denoted DOMAIN(INP), is the domain referenced by
[id_3.]Jid_4. Let DOMAIN(INP) = D. Then

» LENGTH(INP) = LENGTH(D)

» SCALE(INP) = SCALE(D)

» DATACLASS(INP) = DATACLASS(D)

The functions AdaNAME and AdaTYPE are defined on parameters as follows:

1. If id_2 is present in the-definition of INP, then AdaNAME(INP) = id_2 otherwise,
AdaNAME(INP) = id_1. For no two parameters, INP; and INP», in an input parameter
list shall AdaNAME(INP;) = AdaNAME(INP»).

-2. AdaTYPE(INP) shall be the name of a type within the domain identified by the
domain_reference [id_3.]Jid_4. If not null appears within the textual representation of

INP, or the domain identified by the domain_reference does not null only, then
AdaTYPE(INP) shall be the name of the not null-bearing type within the identified

Intermetrics, Inc. 57

SAMeDL Language Reference Manual

domain; otherwise it shall be the name of the null-bearing type within that domain (see
Section 4.1.3).

The optional out may occur only in a parameter that is associated with a procedure or cursor that
is extended. The optional in, however, may be included in any parameter declaration.

Given INP as defined above, define MODE(INP) to be

» in, if INP either contains (1) the optional in, but not the optional out, or (2) neither in
nor out.

» out, if INP contains out but not in.
» inout, if INP contains both in and out.
Then the generated parameter, PARMa4a(INP), in the Ada_formal_part is of the form
AdaNAME(INP) : MODE(INP) AdaTYPE(INP); ~
SQL Semantics

Let INP be as given above and let D be the domain referenced by [id_3.Jid_4.. The
SQL_parameter_declaration PARMgQL(INP) is declared by the following

: SQLNnaME(D_1) DBMS_TYPE(D)

where DBMS_TYPE(D) is as given in Section 4.1.3. If not null does not appear within the
textual representation of INP, and [id_3.]id_4 does not identify a not null only domain, then the
parameter INDICsQL(INP) is defined and has a textual representation given by the
SQL_parameter_declaration

: INDICNAME(INP) indicator _type

where indicator_type is the implementation defined type of indicator parameters ([SQL] 5.6.2).
The name INDICNAME(INP) shall not appear as the name of any other parameter of the
enclosing procedure.

5.7 Select Parameter Lists

Select parameter lists serve to inform the DBMS what data are to be retrieved by a select or fetch
statement. They also specify the names and types of the components of a record type - the so
called row record type - which appears as the type of a formal parameter of Ada procedure
declarations for select and fetch statements. Further they specify the column names of viewed
tables (see section 4.2.2).

select_list ::= * | select_parameter { , select_parameter }
select_parameter ::= value_expression [named_phrase] [not null]
[dblength [named_phrase]]

1. The select list star ("*") is equivalent to a sequence of select parameters described as
follows: Let Ty, T2, ..., Tk be the list of exposed table names in the table expression from
clause for the query specification in which the select list appears (see [SQL) Section 5.25).

58 Intermetrics, Inc.

[—
v

Chapter 5 - Abstract Module Description Language

Let Uj, for 1 <1 <k be defined as Sj Vi if T; is of the form S;.Vi (i.e., Sj is a schema_name,
and Vi is a table name); otherwise, Uj is Tj. In other words, U; is Tj with every "." replaced
by an underscore “_". Let Aj 1, Aj2,. - . , Aim;, be the names of the columns of the table
named T;. Then the select list is given by the sequence T1.A1,; named Uj_A1;, T1.A12
named U;_A12, ..., Ti.Ajjnamed Uj_A;;, ..., Tx.Ax m named Uy Ay, That is, the
columns are listed in the order in which they were defined (see Section 4.2) within the
order in which the tables were named in the from clause.

Note: This definition differs from that given in [SQL] Section 5.25 (4) in specifying that
the column references are qualified by table name or correlation name. The record type
being described must have well defined component names.

Note: Use of "*" as a select list in an abstract module is considered poor programming
practice. The interpretation of "*" is subject to change with time, as the database design
changes. Programs which use a "*" may cease functioning where a program using a named
select list would continue to operate correctly.

In the following discussion, assume that a select list "*" has been replaced by its equivalent
list, as described above.

2. If the keyword dblength is present, then value_expression shall have the data class
character.

3. Let VE be the value_expression appearing in a select_parameter. DOMAIN(VE) shall not
be NO_DOMAIN and VE shall conform to DOMAIN(VE).

Ada Semantics
Let SP be a select parameter written as
VE [named id_/] [not null] [dblength [named id 2]]

SP is assigned the Ada type name AdaTYPE(SP), the Ada name AdaNAME(SP) and the
dblength name DBLngNAME(SP) as follows:

 Let DOMAIN(VE) = D (see Sectio.. 5.10) where D # NO_DOMAIN. If not null
appears in SP or D is a not null only domain, then AdaTYPE(SP) is the name of the not
null-bearing type name within the domain D; else AdaTYPE(SP) is the name of the
null-bearing type within the domain D.

» If DOMAIN(VE) = NO_DOMAIN then AdaTYPE(SP) is undefined.

» If id_1 appears in SP, then AdaNAME(SP) = id_I; else AdaNAME(SP) =
AdaNAME(VE) (see Section 5.10).

+ If the dblength phrase appears in SP, then
-- If id_2 is present then DBLngNAME(SP) = id 2
-- else, DBLngNAME(SP) = AdaNAME(SP)_DbLength
Otherwise, DBLngNAME(SP) is undefined.

Intermetrics, Inc. 59

SAMeDL Language Reference Manual

+ DBLngNAME(SP) and AdaNAME(SP) shall not appear as either DBLngNAME(SP;)
or as AdaNAME(SP;) for any other select_parameter SPj within the select_list that
contains SP.

SQL Semantics
From a select_list, three SQL fragments must be derived:
1. An SQL_select_list, within the select statement or cursor declaration
2. A list of SQL_parameter_declarations.
3. An SQL_target_list, within a select statement or fetch statement.
An SQL_select_list is derived from a select_list as follows:

» The select_list * becomes the SQL_select_list *.

« Otherwise, suppose SP1, SPa, . . ., SP;, is a select_list, where SP, is given by:

VE; [named id_I;][not null]; [dblength; [named id_2;]]
The SQL_select_list, SP'y, SP'2, . . ., SP'; is formed by setting SP'; to SQLyE(VE;).

For the purpose of defining the SQL_parameter_declarations and target list generated from a
select_list, let SPy, SPa, . . ., SP, be the select_list supplied or the select_list that replaced the
select_list * as described above. Let each SP; be be as given above. Then _

e There are two SQL parameters associated with each select_parameter, SP;. They are
PARMsqL(SP;) and INDICsqQL(SP;), where the SQL_parameter_declaration declaring
PARMsQL(SPy) is

: SQLNAME(SPY) DBMS_TYPE(DOMAIN(VEy)
and the SQL_parametef_declaiation declaring INDICgqL(SP;) is
: INDICsQL(SPY indicator_type

where SQLNAME(SP) and INDICsqQL(SP;) are SQL _identifiers not appearing else
where.

» The target list generated from a select_list is a comma-separated list of
SQL _target_specifications ([SQL], section 5.6). The ith SQL _target_specification in
the SQL target list is

SQLNAME (SP;) INDICATOR : INDICNAME(SP)

Note: All derived target specifications contain indicator parameters, irrespective of the
presence or absence of a not null phrase in the select parameter declaration.

60 : Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

5.8 Value Lists And Column Lists

insert_column_list ::= insert_column_specitication { , insert_column_specitication }
insert_column_specification ::= column_name [named_phrase] [not null }
insert_value_list ::= insert_value {, insert_value }

insert_value ::= null
constant_reference
literal
column_name
domain_parameter_reference

Each column_name within a insert_column_list shall specify the name of a column within the
table into which insertions are to be made by the enclosing insert_statement_values. (See
Seciion 5.3. See also [SQL], 8.7(3).)

Let C be the insert_column_specification
Col [named id] [not null] -

Then AdaNAME(C) is defined to be id, if id is present; otherwise itis Col. Let DOMAIN(C)
= DOMAIN(Col) = D be the domain assigned to the column named Col. If not null appears in
C, or D is a not null only domain, then AdaTYPE(C) is the name of the not null-bearing type
within the domain D; otherwise, AdaTYPE(C) is the null-bearing type within the domain D.

Let CL be the insert_column_list Cj, ..., Cy, ; let IL be the insert_value_list V1, ..., V. CL and
IL are said to conform if:

1. m=n, that is, the length of the two lists is the same;
2. Foreach 1<i<m, if Vi is

a. The literal null, then DOMAIN(C;) shall not be a not null only domain..

b. A literal or reference to either a constant or a domain parameter, then V; shall
conform to DOMAIN(G;) (see section 3.5) and if DATACLASS(DOMAIN(C;))
is character, then LENGTH(V}) shall not exceed LENGTH(DOMAIN(C;)).

¢. A column_name, then V; shall be identical to the column_name in C;.

Ada Semantics

The insert_column_list and insert_value_list of an insert_statement_values together define the
components of an Ada record type declaration. The names, types and order of those components
are defined in Section 5.2 on the basis of the functions AdaNAME and AdaTYPE described
above. For the name of the record type and its place of declaration, see Section 5.9. -

Note: If the insert_values_list contains no column_names, then the Ada procedure

corresponding to the procedure containing the insert_statement_values statement of which these
lists form a part does not have a row record parameter. See Section 5.2.

Intermetrics, Inc. 61

SAMeDL Language Reference Manual

SQL Semantics

A set of SQL parameter declarations is defined from the pair of insert_column_list and
insert_value_list. So again let Cj, ..., Cg be the subsequence of the insert_column_list such that
the insert_value_list item corresponding to each C;j is a column_name (and therefore neither a
literal nor a constant reference nor a domain parameter reference). Further, let C; be represented
by the text string

COL; [named id;] [not nul;)
Then the SQL parameter declarations PARMsqL(C;) for 1<i<k given by

SQLnaME(Col)) DBMS_TYPE(DOMAIN(Coly))
appear in the list of SQL parameter declarations, where

1. SQLNAME(Col;) is an implementation-defined SQL _identifier which appears nowhere
else.

2. DBMS_TYPE(DOMAIN(Col;)) is as defined in_section 4.1.3.

If not null does not appear in C; and the domain DOMAIN(Co};) is not not null only, then the
parameter INDICNAME(G) is defined and the parameter declaration

INDICNAME(C;) indicator_type
also appears in the list of SQL parameter declarations, where

1. INDICNAME(G) is an implementation-defined SQL_identifier that appears nowhere
else.

2. indicator_type is the implementation-defined type of indicator parameters ([SQL]
5.6.2).

An insert_column_list and insert_value_list pair are transformed into an SQL_insert_column_list
and SQL_insert_value list pair as follows:

1. Aninsert_column_list is transformed into an SQL_insert_column_list by the removal of
all named_phrase and not null phrases that appear in it.

Note: This implies that the empty insert_column_list is transformed into the empty
SOL_insert_column_list.

2. Aninsert_value_list is transformed into an SQL_insert_value list by replacing each list
element as follows: '

a. a literal (including the literal null but excluding any enumeration literal) is
replaced by itself; i.e., it is unchanged;

b. aconstant_reference, enumeration_literal, or domain_parameter_reference k is
replaced by a textual representation of its database value SQLvE(k) (see Section
5.10).

c. acolumn_name Col; is replaced by

62 - Intermetrics, Inc.

. Chapter 5 - Abstract Module Description Language

SQLNAME(Col) [INDICATOR : INDICNAME(Ci)]

where the INDICATOR phrase appears whenever the indicator parameter,
INDICsqL(Cj), is defined (see above).

enclosing the resulting list in parentheses and preceding it with the keyword values.

5.9 Into_Clause And Insert From_Clause

An into_clause is used within a select_statement or a fetch_statement, and an insert_from_clause
is used within an insert_statement_values, to explicitly name the row record parameter of those
statements and/or the type of that parameter.

into_clause ::= into B
insert_from_clause ::= from into_from_body
into_from_body ::= Ada_identifier_1 : record_id |
Ada_identifier_1 |
: record_id
record_id = new Ada_idertifier 2 |
record_reference

Ada Semantics
Define the string PARMRow(IC) as follows, where IC is an into_clause or insert_from_clause.
1. If Ada_identifier_1 appears in IC, then PARMRow(IC) = Ada_identifier_1.

2. Otherwise, if the record_id takes the form of a record_reference réferéncing the record
declaration R, then PARMRqw(IC) = AdaNAME(R) (see Section 4.1.3).

3. Otherwise, PARMRow(IC) = Row.
Define TYPERow(IC) as follows:

1. If record_id has the form "new Ada_identifier_2", then" TYPERow(IC) =
Ada_identifier_2.

2. Otherwise, TYPERow(IC), is the record type referenced by the record_reference.

Note: The assumptions made about into_clause and insert_from_clause in sections 5.3 and 5.5
are sufficient to ensure that every such clause contains a record_id, possibly by assumption.
Therefore, the case of a missing record_id need not be considered in the definition of
TYPERow(IC) If the record_id is a record_reference, then the names, types, and order of the
components of the record type declaration that would have been generated had the record_id
been "new Ada_identifier" (see sections 5.2, 5.4, and 5.7).

Intermetrics, Inc. 63

SAMeDL Language Peference Manual

Examples:

The following is a set of examples which illustrate various uses of into and from clauses. It is
assumed that each of these procedures is declared within an abstract module, and that any
enumeration, record, and status map declarations used are visible at the point at which each
procedure is declared. In addition, it is assumed that the abstract modules in which these
procedures are declared have direct visibility to the contents of the Parts_Supplier_Database
schema module shown in Section 4.2.2.

The two examples below illustrate the use of a previously declared record object in the into
clauses of select statements. These examples illustrate a possible scenario where an SQL module
contains two select statements for the-same object, namely a part. The first select statement
below exists in a cursor declaration because it has the potential to return more than one record.
The second select statement exists in a procedure, because it can return at most one record from
the table. Since both select statements retrieve the same type of object from the database, they
may share a row record. The row record contains the definition of the part abstraction. To share
a record object, declare the record first, and then reference it in the into clauses of both select
statements.

cursor Parts_By_City (
Input_City named Part_Location : City_Domain not null)
for
select Pno named Part_Number not nuil,
Pname named Part_Name,

Color,
Weight * 16 named Weight_in_Ounces,
City

into Parts_By_City_Row : Parts_Row_Record_Type

from P
where City = Input_City

procedure Parts_By_Number (
input_Pno named Part_Number : Pno_Domain not nuil)
is
select Pno named Part_Number not null,
Pname named Part_Name,

Color, A
Weight * 16 named Weight_In_Ounces,
City
into Parts_By_Number_Row : Parts_Row_Record_Type

from P
where Pno = Input_Pno
status Operation_Map named Parts_By_Number_Status

The above declarations produce the following Ada declarations in the abstract interface.

package Parts_By_ City Is
procedure Open (Part_Location : In City_Domain_not_null);

procedure Fetch (
Parts_By_City Row : in out Pans_Row_Record_Type;
Is_Found : out boolean);

procedure Close;

64 . Intermetrics, Inc.

—
]

)

Chapter 5 - Abstract Module Description Language

end Parts_By_City;

procedure Parts_By_Number (
Part_Number : in Pno_Domain_not_null;
Parts_By Number_Row : in out Parts_Row_Record_Type;
Parts_By_Number_Status : out Operation_Status);

The select procedure below illustrates the use of an into clause to specify the parameters, types,
and names of the generated row record parameter.

procedure Part_Name_By_Number (
Input_Pno named Part_Number : Pno_Domain not nuil)
Is
select Pname named Part_Name ‘
into Part_Name_By Number_Row : new Part_Name_Row_Record_Type
from P
where Pno = Input_Pno.
status Operation_Map named Parts_By_Number_Status

The above declaration produces the following Ada record type and procedure declarations at the
in the abstract interface.

type Part_Name_Row_Record_Type Is record
Part_Name : Pname_Domain_Type;
end record;

procedure Part_Name_By_Number (
Part_Number : in Pno_Domain_not_null;
Part_Name_By_Number_Row : in out Part_Name_Row_Record_Type;
Parts_By_Number_Status : out Operation_Status);

The example declaration below uses the default from clause, which produces a record
declaration in the abstract interface.

procedure Add_To_Suppliers Is
Insert into S (Sno, Sname, Sstatus, City)
values
status Operalion_Map named Insert_Status

The above procedure declaration produces the following Ada code in the abstract interface.

type Add_To_Suppliers_Row_Type Is record

Sno : Sno_Domain_Type;

Sname : Sname_Domain_Type;

Sstatus : Sstatus_Domain_Type;

City : City_Domain_Type;
end record;

procedure Add_To_Suppliers (
Row . in Add_To_Suppliers_Row_Type;

Intermetrics, Inc. 65

SAMeDL Language Reference Manual

Insert_Status : out Operation_Status);

This last example illustrates an insert values procedure declaration where all of the values are
literals, meaning that no row record parameter is needed for the procedure declaration at the
interface.

procedure Add_To_Parts Is
insert into P (Pno, Pname, Color, Weight, City)
values ('P02367', 'RIGHT FENDER: TOYOTA', LT_RED, 25, 'PITTSBURGH)
status Operation_Map named Insert_Status

The above declaration produces the followmg Ada procedure declaration in the abstract
interface.

procedure Add_To_Pans (Insert_Status : out Operation_Status);

5.10 Value Expressions

The concrete syntax of SAMeDL value expressions differs from the concrete syntax of SQL
value expressions in the following ways:

1. An operand of a SAMeDL value expression may be a reference to a constant, domain
parameter, or enumeration literal defined either in a definitional module or in the
- enclosing abstract module.

2. Value expressions are strongly typed; therefore, a domain conversion operation must be
introduced.

value_expression ::= term |
value_expression +term |
value_expression - term

term = factor
term * factor |
term / factor

tactor ::=[+ | -] primary

primary ::= literal
constant_reference
domain_parameter_reference
column_reference
input_reference
set_function_specificafion
domain_conversion
(value_expression)

set_function_specification ::= count (*) |
distinct_set_function |
ali_set_function

distinct_set_function ::= [avg | max | min | sum | count] (distinct column_reference)

66 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

all_set_function ::= [avg | max | min | sum] ([all] value_expression)

domain_conversion ::= domain_reference (value_expression)

Five mappings are defined on value_expressions: AdaNAME, DOMAIN, DATACLASS,
LENGTH, and SCALE.

The mapping AdaNAME calculates the default names of row record components when value
expressions appear in select parameter lists. The range of AdaNAME is augmented by the
special value NO_NAME, the value of AdaNAME for literals and non-simple names.

The mapping DOMAIN assigns a domain to each well-formed value expression. (Note: If
DOMAIN is not defined on a value expression, then the value expression is not well-formed).
The class of domains is augmented by the special value NO_DOMAIN, the domain of literals
and universal constants.

The mapping DATACLASS assigns a data class to each well-formed value expression. If the
expression is a literal or universal constant (or composed solely of literals and universal
constants), that is if DOMAIN(VE)= NO_DOMAIN, then the mapping returns the data class of
the literal or universal constant (see section 2.4).

" The mapping LENGTH returns the number of characters in a character string. LENGTH returns

the special value NO_LENGTH on operands whose data class is not character.

The mapping SCALE returns the scale of the result of a numeric expression as determined by
SQL. SCALE retumns the special value NO_SCALE on operands whose data class is not
numeric.

The mappings AdaNAME, DOMAIN, DATACLASS, LENGTH and SCALE are defined
recursively as follows:

Base Cases:
1. Literals. Let L be a literal. Then AdaNAME(L) = NO_NAME, DOMAIN(L) =
NO_DOMAIN. DATACLASS(L), LENGTH(L), and SCALE(L) are as defined in
Section 2.4.
2. References. Let F be an input_reference, a constant_reference, a
domain_parameter_reference, or a column_reference; let G be the object to which F
makes reference. Then

* AdaNAME(F) = F if F is the simple name of G; otherwise, AdaNAME(F) =
NO_NAME.

+ DOMAIN(F) = DOMAIN(G),

» DATACLASS(F) = DATACLASS(G),
* LENGTH(F) = LENGTH(G), and

» SCALE(F) = SCALE(G).

Intermetrics, Inc. 67

SAMeDL Language Reference Manual

See sections 5.6, 4.1.4,4.1.3, and 4.2.1.
Recursive Cases:
1. Set functions. Let SF be a set function and let VE be a value expression.
AdaNAME(SF(VE)) = NO_NAME.
If SF is MIN or MAX, then

-- DOMAIN(SF(VE)) = DOMAIN(VE),

-- DATACLASS(SF(VE)) = DATACLASS(VE)

-- LENGTH(SF(VE)) = LENGTH(VE),

- SCALE(SF(VE)) = SCALE(VE)
- If SF is COUNT, then

-- DOMAIN(COUNT(VE)) = DOMAIN(COUNT(*)) =NO_DOMAIN
DATACLASS(COUNT(VE)) = DATACLASS(COUNT(*)) = Integer,
LENGTH(COUNT(VE)) = LENGTH(COUNT(*)) = NO_LENGTH

- SCALE(COUNT(VE)) = SCALE(COUNT(*)) = 0 (see Section 2.4). ‘

If SF is SUM, then

- DOMAIN(SUM(VE)) = NO_DOMAIN

- DATACLASS(SUM(VE)) = DATACLASS(VE) and shall be a numeric
data class _

-- LENGTH(SUM(VE)) = NO_LENGTH
- SCALE(SUM(VE)) = SCALE(VE)
If SF is AVG, then

-- DOMAIN(AVG(VE)) = NO_DOMAIN
- LENGTH(AVG(VE)) = NO_LENGTH

-- DATACLASS(VE) shall be numeric and DATACLASS(AVG(VE)) and
SCALE(AVG(VE)) are implementation defined.

2. Domain Conversions. Let D be a domain reference, VE a value expression. Then
-- AdaNAME(D(VE)) = NO_NAME.
-- DOMAIN(D(VE)) = D provided

68 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

a. DATACLASS(D) and DATACLASS(VE) are both numeric. In this
case SCALE(D(VE)) = SCALE(VE), and if SCALE(D) < SCALE(VE)
then a warning message must be generated which will state, in effect,
that the loss of scale implied by this conversion will not occur in the
query execution. The warning message need not be generated if the
value expression is in an assignment context (see section 3.5).
LENGTH(D(VE)) = NO_LENGTH in this case.

b. DATACLASS(D) and DATACLASS(VE) are both character. In this
case, LENGTH(D(VE)) = LENGTH(VE), and if LENGTH(D) <
LENGTH(VE) then a warning message must be generated which will
state, in effect, that the loss of length implied by this conversion will not
occur in the query execution. The warning message need not be
generated if the value expression is in an assignment context (see section
3.5). SCALE(D(VE)) = NO_SCALE in this case.

c. DATACLASS(D) and DATACLASS(VE) are both enumeration,
provided that

i. if DOMAIN(VE) # NO_DOMAIN, then DOMAIN(VE) =D;

ii. if POMAIN(VE) = NO_DOMAIN, then the value of VE is an
enumeration literal in the domain D (Note: Thus domain
conversion may play the role played by type qualification in Ada,
[Ada] 4.7).

LENGTH(D(VE)) = NO_LENGTH and SCALE(D(VE)) = NO_SCALE
in this case.

-- DATACLASS(D(VE)) = DATACLASS(VE).
Note: These rules imply that the equalities
-- DATACLASS(DOMAIN(VE)) = DATACLASS(VE)

LENGTH(DOMAIN(VE)) = LENGTH(VE)

SCALE(DOMAIN(VE)) = SCALE(VE)
do not necessarily hold.
3. Arithmetic Operators. Let VE;, VE; be value expressions. Let
DOMAIN(VE}) = Dy;
DOMAIN(VE)) = Dy;
DATACLASS(VE) =Ty;
DATACLASS(VE?2) =T,
SCALE(VE)) = Sy;
SCALE(VE)) = Sy;
Then Ty and T3 shall be numeric classes and

a. For unary operators (+, -)

Intermetrics, Inc. 69

SAMeDL Language Reference Manual

~ AdaNAME([+-]VE;) = NO_NAME.
—~ LENGTH([+-]VE;) = NO_LENGTH.
~ DOMAIN([+-]VE)) =Dy.

- DATACLASS((+-]VEp) = Ti.

— SCALE([+-]VE}) = S1.

b. Letop be any binary arithmetic operator. Then AdaNAME(VE) op VE3) =
NO_NAME. LENGTH(VE1 op VE3) = NO_LENGTH.

c. DATACLASS(VE; op VE32) = max(T}, T2) where float > fixed > integer.

d. Recall that the DOMAIN mapping is defined for a value expression just in case
that value expression is legal. The value expression VE; op VE3 is a legal
value expression if:

-- Dy # NO_DOMAIN and D2 # NO_DOMAIN and either
- T =T, =fixed and op is either multiplication or division; or
- Di1=D2

— or D1 = NO_DOMAIN or Dy = NO_DOMAIN, and

. - Tl = T2 = integer, or else
-~ T) #integer and then T # integer, or else

- T = fixed and D = NO_DOMAIN and op is either
multiplication or division, or else

- Ty =fixed and D; = NO_DOMAIN and op is multiplication
-- otherwise, VE1 op VE2 is not a legal value expression.
e. if VEj op VEz is a legal value expression, then DOMAIN(VE; op VE2) =
-- NO_DOMAIN provided that either
-- Dj=D2=NO_DOMAIN

- or D; # NO_DOMAIN and D2 # NO_DOMAINand T =Tz =
fixed and op is either multiplication or division.

-- Djprovided that Di # NO_DOMAIN
-~ D» otherwise
f. SCALE(VE; op VEp) is given by

-- if op is an additive operator ([+}-]), then the larger of Sy and S

70 Intermetrics, Inc.

Chapter 5 - Abstract Module Description Language

-- if op is multiplication, then the sum of Sj and S

-- if op is division, then it is implementation defined.

Note: The following are consequences of the definitions above.

AdaNAME(VE) has a value other than NO_NAME only in the case where VE is a
simple identifier.

The product and quotient of any two fixed quantities is always defined as a fixed
quantity with no domain, much like the Ada <universal_fixed>. However, whereas in
Ada no operations other than conversion are defined for such quantities, they may be
used anywhere that a literal with fixed data class may be used.

The result of a COUNT set function is treated as though it were an integer literal (see
[SQL] 5.8).

The result of a SUM set function on a value expression VE is treated as though it were
a literal of the data class DATACLASS(VE) (see [SQL] 5.8).

The result of a AVG set function is treated as though it were a literal of an
implementation defined data class and scale (see [SQL] 5.8).

SQL Semantics

The SQL value expression derived from a SAMeDL value e-pression VE is formed by removing
all domain conversions, replacing all constants and domain parameters with their values and all
enumeration literals with their database representations (see section 4.3).

Let SQLyEg represent the function transforming SAMeDL value_expressions into
SQL_value_expressions. Let VE be a SAMeDL value_expression. SQLyE(VE) is given
recursively as follows:

1.

If VE contains no operators, then
a. If VE is a column reference or a database literal, then SQLvE(VE) is VE.

b. If VE is an enumeration literal of domain D, and D assigns expression E to that
enumeration literal (see rule 12 of section 4.1.3), then SQLvg(VE) =
SQLvE(E).

c. If VEis a reference to the constant whose declaration is given by
constant C [: D] is E;
then SQLvyE(VE) = SQLvyg(E).

d. If VE is a reference to a domain parameter P of domain D, and D assigns
expression E to P (see rule 6 of section 4.1.3), then SQLvyg(VE) = SQLvyE(E).

e. If VE is a reference to the input parameter, INP, and PARMsqQL(INP) is ": C T"
(for C an SQL _identifier and T a data type, see section 5.6), then SQLvE(VE) is

:C [INDICATOR : INDICNAME(INP) |

Intermetrics, Inc. 71

SAMeDL Language Reference Manual

where INDICATOR INDICNAME(INP) appears precisely when
INDICsqL(INP) is defined. See Section 5.6.

2. If VE is SF(VEl) where SF is a set function, then SQLvE(SF(VE})) is
SF(SQLvVE(VE))). '

3. If VE is D(VE}), where D is a domain name, then SQLvVE(D(VE))) is SQLvE(VE)}).
4. If VE is +VE) (or -VE)) then SQLVE(VE) is +SQLvE(VE]) (or -SQLVE(VEY})).

5. If VE is VE; op VE; where op is an arithmetic operator, then SQLvE(VE) is
SQLVE(VE)) op SQLVE(VE2).

6. If VE is (VE}) then SQLvE(VE) is (SQLyE(VE})).

Note: As a consequence of these definitions, particularly item 3, a domain conversion should be
considered an instruction to a SAMeDL processor that a given expression is well-formed and
should not be considered a data conversion. Although SAMeDL enforces a strict typing
discipline, data conversions are carried out under the rules of SQL, not those of Ada. Itis for this
reason that warning messages are given for conversions which lose scale.

5.11 Search Conditions

search_condition ::= boolean_term | search_condition or boolean_term
boolean_term ::= boolean_factor | boolean_term and boolean_factor
boolean_factor e [not] boolean_primary

boolean_primary ::= predicate | (search_condition)

predicate ::= comparison_predicate |
between_predicate |
in_predicate |
like_predicate |
null_predicate |
quantified_predicate |

exists_predicate

The concrete syntax of search conditions differs from that of SQL only in that SAMeDL value
expression (Section 5.10) replaces SQL value expression in the definition of the atomic
predicates [SQL] 5.11 through 5.17. In addition, the SAMeDL enforces a strict typing discipline
on the atomic predicates, not enforced by SQL.

For convenience, the following subsections present the syntax for each of the search predicates.
Semantics are defined below in conjunction with [SQL].

The atomic predicates of SQL take a varying number of operands; the comparison predicate

takes two, the between predicate takes three, and the in predicate takes any number. So let {OP;,

OPy, ..., OPpy} be the set of operands of any atomic predicate. Each of the OP; is of the form of a

value expression. Therefore, the functions DOMAIN and DATACLASS may be applied to them

(ISchion 5.10). For an atomic predicate to be well formed, then for any pair of distinct i and j,
<i, j<m

72 . Intermetrics, Inc.

-]

Chapter 5 - Abstract Module Description Language

1.

2.

If DOMAIN(OP;) # NO_DOMAIN and DOMAIN(OP;) # NO_DOMAIN, then
DOMAIN(OP;) = DOMAIN(OPj), and

Exactly one of the following holds:
a. DATACLASS(OR;) = DATACLASS(OP;j) = integer:;
b. DATACLASS(OP;) = DATACLASS(OPj) = character;

c. Both DATACLASS(OP;) and DATACLASS(OP;) are elements of the set
{ fixed, ﬂoa(}

d. DATACLASS(OP;) = DATACLASS(OPj) = enumeration, and there exists
some k, 1<k<m such that

i. DOMAIN(OPy) # NO_DOMAIN, and
ii. For all], 1<1<m, either

1. DOMAIN(OP;)) = NO_DOMAIN, and OP; is an enumeration
literal of the domain DOMAIN(OPy), or

2. DOMAIN(OP)) = DOMAIN(OPy).

SQL Semantics

A SAMeDL search condition is transformed into an SQL_search_condition by application of the
transformation SQLgc which operates by executing the transformation SQLvE, defined in
Section 5.10, to the value expressions appearing within the search condition and the
transformation SQLgQ, defined in Section 5.12, to the subqueries in the search condition. In
other words, let P, P, and P2 be search conditions, VE, VE}, VE2 __ VE be value expressions,
and SQ be a subquery. Then SQLgc(P) is given by '

1.

If P is of the form: Pj; op P2, where op is one of "and" or "or", then SQLsc(P) is
SQLsc(P1) op SQLsc(P2) (ISQL] 5.18).

If P is of the form: "not P1", then SQLsc(P) is not SQLsc(P1) ([SQL] 5.18).

If P is of the form: "VE; op VE3", where op is an SQL comparison operator (ISQL]
5.11), then SQLsc(P) = SQLvE(VE}) op SQLyE(VE2). If P = VE op SQ, then
SQLsc(P) = SQLVE(VE) op SQLsQ(SQ) ([SQL] 5.11).

If P is of the form: "VE [not] between VE; and VE3" then SQLsc(P) = SQLvE(VE)
[not] between SQLvE(VE)}) and SQLvE(VE?) ([SQL] 5.12).

If P is of the form: "VE [not] in SQ", then SQLsc(P) = SQLyE(VE) [not] in
SQLsQ(SQ). If P is of the form: "VE [not] in (VE;, VEy, ..., VE;, ...)" then SQLsc(P)
= SQLVE(VE) [not] in (SQLVE(VE}), SQLVE(VE), ..., SQLVE(VE),...)

If P is of the form: "VE; [not] like VE; escape c" where c is a character, then
SQLsc(P) = SQLvVE(VED) [not] like SQLVE(VE?) escape ¢ ([SQL] 5.14).

Intermetrics, Inc. 73

SAMeDL Language Reference Manual

7. If Pis of the form: "C is [not] null" where C is a column reference, then SQLsc(P) =
C is [not] null ([SQL] 5.15). Note: SQLsc is the identity mapping on
SQOL_null_predicates. '

8. If P is of the form: "VE op quant SQ" where op is an SQL_comp_op, quant is an
SQL _qualifier (i.e., one of SOME, ANY or ALL), then SQLgc(P) = SQLvE(VE) op
quant SQLsq(SQ) ([SQL]5.16).

9. If Pis of the form: "exists SQ", then SQLsc(P) = exists SQLsQ(SQ) ([SQL] 5.17).
5.11.1 Comparison Predicate

comparison_predicate ::= value_expression comp_op val_or_subquery

val_or_subquery ::= value_expression | subquery

comp_opi==z|<>|<|>]|<=]|>=

5.11.2 Between Predicate

between_predicate ::= value_expression [not] between value_expression and value_expression

5.11.3 In Predicate
in_predicate ::= vaiue_expression [not] in subquery_or_value_spec_list
subquery_or_value_spec_list ::= subquery | (value_spec_list)
value_spec_list ::= value_spec { , value_spec)
value_spec ::= input_reference |
static_expression i
user
5.11.4 Like Predicate
like_predicate ::= column_reference [not] like pattem_string [escape_clause]
pattemn_string ::= value_spec

escape_clause ::= escape value_spec

5.11.5 Null Predicate

null_predicate ::= column_reference is[not] null

5.11.6 Quantified Predicate
quantified_predicate ::= value_expression comp_op quantifier subquery

quantifier ::= all | some | any

74 Intermetrics, Inc.

C@pter 5 - Abstract Module Description Language

5.11.7 Exists Predicate

exists_predicate ::= exists subquery

5.12 Subqueries

The concrete syntax of a subquery ([SQL] 5.24) differs from that of query specifications in that
the select list is limited to at most one parameter. Further, that parameter, when present, takes the
form of a value expression (Section 5.10), not that of a select parameter (Section 5.7), as it is not
visible to the user of the abstract module.
subquery ;.= (select [distinct | all] result_expression
from_clause
[where search_condition]
{ SQL_group_by_clause]
[having search_condition })
result_expression ::= value_expression | *
Ada Semantics . -

If, within a subquery, SQ, the result_expression takes the form of a value_expression, VE, then
DOMAIN(SQ) = DOMAIN(VE) and DATACLASS(SQ) = DATACLASS(VE). DOMAIN(SQ)
and DATACLASS(SQ) are undefined when the result_expression takes the form of *.

Note: The tact that DOMAIN(*) is undefined means that such a result_expression can be used
only if the subquery appears within an exists_predicate. '

SQL Semantics
The SQL_subquery formed from a SAMeDL subquery, SQ, denoted SQL5Q(SQ), is produced by

removing any as keywords, if present, from the from_clause and applying the transformation
SQLgc to the search_conditions in the where and having clauses, if present.

5.13 Status Clauses

A status clause serves to attach a status map to a procedure and optionally rename the status
parameter.

status_clause ::= status status_reference [named_phrase]

Ada Semantics

If a procedure P has a status_clause of the form
status M [named Id_1]

and the definition of M was given by (see Section 4.1.5):
enumeration T is (L, ..., Ly);

status M [named Id_2]
' uses T

Intermetrics, Inc.

SAMeDL Language Reference Manual

is (..., n=>L, ...);
(see section 4.1.8), then:
1. The procedure Pad, (Sections 5.3 and 5.5) shall have a status parameter of type T.
2. The name of the status parameter of Pad, is determined by:

a. If id_] is present in the status_clause, than the name of the status parameter
shall be id_1.

b. If rule(a) does not apply, then if id_2 is present in the definition of the status
map M, the name of the status parameter shall be id_2 (see section 4.1.8).

c. If neither rule (a) nor rule (b) apply, then the name of the status parameter shall
be Status.

76 Intermetrics, Inc.

[
™

-

Appendix A - SAMeDL Standard

Appendix A SAMeDL _Standard

The predefined SAMeDL definitional module SAMeDL_Standard provides a common location
for declarations that are standard for all impiementations of the SAMeDL. This definitional
module includes the SAMeDL declarations for the status map Standard_Map and for the
standard base domains.

definition module SAMeDL_Standard is

exception SQL_Database_Error;
exception Null_Value_Error;

-- standard status map
status Standard_Map named Is_Found uses boolean is
(0 => True, 100 => False);

-- SQL_Int is based on the Ada type SQL_Standard.Int
base domain SQL_Int
(first :integer;
last :integer)
is
domain pattern is
type [self]_Not_Null is new SQL_Int_Not_Null’
'{ range [first] .. [last] };'
‘type [self]_Type is new SQL_|Int;’
'‘package [self]_Ops is new SQL_Int_Ops ('
‘[self]_Type, [self]_Not_Null);
end pattem,;

derived domain pattern is
type [self] Not_Null is new [parent] Not_Null'
'{ range [first] .. {last] };'
type [self]_Type is new [parent] Type;'
‘package {self] Ops is new SQL_Int_Ops ('
‘[self]_Type, [self]_Not_Nul);'
end pattem;

subdomain pattern is
'subtype [self] Not Null is [parent] Not_Nuil'
‘{ range {tirst] .. {last] };
‘type [self] Type is new [parent] Type;’
‘package [self]_Ops is new SQL_Int_Ops ('
‘[self]l_Type, {self] Not_Null);
end pattem;

for not null type name use '[self] Not_Nuil’;

for null type name use ‘[self]_Type";

for data class use integer,;

for dbms type use integer;

for conversion from dbms to not null use type mark;

for conversion from not null to null use function
‘[self] Ops.With_Null';

for conversion from null to not nuil use function
[self]_Ops.Without_Null’;

for conversion from not null to dbms use type mark-

Intermetrics, Inc. 77

SAMeDL Language Reference Manual ‘ \

for context clause use ‘with sql_int_pkg; use sql_int_pkg;' ;
for null_bearing assign use ‘[self] ops.assign’;

tor not_null_bearing assign use predefined;

for null_value use 'null_sqgl_int’ ;

end SQL_Int;

- SQL_Smallint is based on the Ada type SQL_Standard.Smallint
base domain SQL_Smallint

(first :integer;

last :integer)
is

domain pattern is

‘type [self]_Not_Null is new SQL_Smallint_Not_Null
' range ffirst] .. (last] }; .
‘type [self]_Type is new SQL_Smallint;’
‘package [self]_Ops is new SQL_Smallint_Ops ('
Tself]_Type, [self] _Not_Null);’
end pattem;

derived domain pattern is
‘type [self]_Not_Null is new [parent] Not_Nulil
{ range ffirst] .. flast] };
‘type [self]_Type is new [parent] Type'
‘package [self]_Ops is new SQL_Smallint_Ops ('
Tself]_Type, [self]_Not_Null);
end pattern;

subdomain pattemn is i
‘subtype [self] Not_Null is [parent] _Not_Null
'{ range [first] .. last] }!
‘type [self]_Type is new [parent] Type;'
‘package [self] Ops is new SQL_Smallint_Ops ('
Iself]_Type, [self] Not_Nuli);’
end pattemn;

for not null type name use Tself]_Not_Nuir;

for null type name use Tself]_Type';

for data class use integer;

for doms type use integer;

for conversion from dbms to not null use type mark;

for conversion from not nuli to null use function
Tself]_Ops.With_Null’;

for conversion from null 1o not null use function
Tself]_Ops.Without_Null’;

for conversion from not null to dbms use type mark;

for context clause use
‘with sql_smallint_pkg; use sql_smallint_pkg;' ;
for null_bearing assign use Tself] ops.assign’ ;
for not_null_bearing assign use predetined;
for null_value use 'null_sql_smallint’ ;

end SQL_Smallint;
-- SQL_Real is based on the Ada type SQL_Standard.Real

base domain SQL_Real
(tirst :float;

78 Intermetrics, Inc.

|

. Appendix A - SAMeDL Standard

last :float)
is
domain pattem is
‘type [self] Not_Null is new SQL_Real_Not_Nuil'
'{ range [first] .. {last] };
‘type [self]_Type is new SQL_Real;’
‘package [self] _Ops is new SQL_Real_Ops ('
[self]_Type, [self]_Not_Null);’
end pattem;

derived domain pattern is
‘type [self]_Not_Null is new [parent] Not_Nuil
' range [tirst] .. [last] };'
type [self]_Type is new [parent] Type.'
‘package [self] Ops is new SQL_Real_Ops ('
[self]_Type, [self]_Not_Null);’
end pattemn;

subdomain pattern is
'subtype [self] Not_Null is [parent] Not_Null
‘{ range [first] .. {last] };’
‘type [self]_Type is new [parent]_Type;’
‘package [self]_Ops is new SQL_Real_Ops ('
self]_Type, [self]_Not_Null);’
end pattem;

for not null type name use ‘[self]_Not_Null’;

for null type name use ‘[self]_Type';

for data class use float;

for dbms type use real; '

for conversion from dbms to not null use type mark;

for conversion from not null to null use function
Tself]_Ops.With_Null’;

for conversion from null to not null use function
[self]_Ops.Without_Null’;

for conversion from not null to dbms use type mark;

for context clause use

‘with sql_real_pkg; use sql_real_pkg;' ;
for null_bearing assign use ‘[self] ops.assign’;
for not_null_bearing assign use predefined;
for null_value use 'null_sql_real';

end SQL_Real;

-- SQL_Double_Precision is based on the Ada type SQL_Standard.Double_Precision
base domain SQL_Double_Precision '

(first :float;
last :float)
is

domain pattemn is

‘type [self]_Not_Nuli is new SQL_Double_Precision_Not_Null'
‘{ range [first] .. [last] };'
type [self]_Type is new SQL_Double_Precision;’
‘package [self]_Ops is new SQL_Double_Precision_Ops ('
Intermetrics, Inc.

79

SAMeDL Language Reference Manual

80

self]_Type, [self]_Not_Null);
end pattern;

derived domain pattern is
‘type [self]_Not_Null is new [parent] Not_Null
'{ range [first] .. [last] };’
type [self]_Type is new [parent] Type;' 1
‘package [self]_Ops is new SQL_Double_Precision_Ops (' -
‘Iself]_Type, [selfl_Not_Null); |
end pattern; i

subdomain pattemn is
‘subtype [self]_Not_Null is [parent] _Not_Null
'{ range [first] .. [last] }:'
type [self]_Type is new [parent] Type:'
‘package [self]_Ops is new SQL_Double_Precision_Ops (' ‘
[self]_Type, [self]_Not_Nuil);' : ‘
end pattern; ‘
\
|
\

for not null type name use [self] Not_Null';

for null type name use ‘[self]_Type";

for data class use float;

for dbms type use double precision;

for conversion from dbms to not null use type mark;

for conversion from not null to null use function
Tself]_Ops.With_Null’;

for conversion from null to not null use function
Tseif]_Ops.Without_Nulf';

for conversion from not null to dbms use type mark;

for context clause use

‘with sql_double_precision_pkg; use sqi_double_precision_pkg;' ;
for null_bearing assign use [self]_ops.assign' ; 1
for not_null_bearing assign use predefined; }
for nuli_value use 'null_sql_double_precision' ;

end SQL_Double_Precision;

-- SQL_Char is based on the Ada type SQL_Standard.Char
base domain SQL_Char .
is
domain pattemn is
‘type [self][NN_Base is new SQL_Char_Not_Null;'
‘subtype [self] Not_Null is [self]NN_Base (1 .. [length]);
type [self]_Base is new SQL_Char;'
‘subtype [self]_Type is [self] Base ('
self]_Not_Nuil"length);’
‘package [self] Ops is new SQL_Char_Ops ('
self]_Base, [self]NN_Base);
end pattern;

derived domain pattem is -
‘type [self]NN_Base is new [parent]NN_Base;

Intermetrics, Inc.

Appendix A - SAMeDL Standard

‘subtype [self]_Not_Null is [sef]NN_Base (1 .. [length]);’
‘type [self]_Base is new [parent]_Base;’
'subtype [self]_Type is [seif] Base ('
[self]_Not_Nuli"length);’
‘package [self]_Ops is new SQL_Char_Ops ('
Iself]_Base, [self]NN_Base):’
end pattemn;

subdomain pattern is
'subtype [sef]NN_Base is [parent]NN_Base;’
'subtype [self]_Not_Null is [parent]NN_Base (1 .. [length]);’
type [self] Base is new [parent] Base;
‘'subtype [self]_Type is [self] Base ('
[self]_Not_Null"length);’
‘package [self]_Ops is new SQL_Char_Ops ('
‘[self]_Base, [self]NN_Base);'
end pattem;

for not null type name use self] _Not_Null’;

for null type name use 7self] Type';

for data class use character;

for dbms type use character ‘([length])’;

for conversion from dbms to not null use type mark;

for conversion from not null to nuil use function
[self]_Ops.With_Nulr'; .

for conversion from: null to not null use function
Tself]_Ops.Without_Nuli’;

for conversion from not null to doms use type mark;

for context clause use ‘with sqi_char_pkg; use sql_char_pkg; ;
for null_bearing assign use predefined;
for null value use 'null_sqgi_char' ;

end SQL_Char,;

-- SQL_Enumeration_As_Int is based on the Ada type SQL_Standard.iInt
base domain SQL_Enumeration_As_Int
_ (map := pos)
is
domain pattern is -
‘type [self]_Not_Null is new [enumeration];’
‘package [self)_Pkg is new SQL_Enumeration_Pkg ('
[self]_not_null)’
‘type [self]_Type is new [self] Pkg.SQL_Enumeration;’
end pattem;

derived domain pattern is
‘type [self] Not_Null is new [parent] Not_Nuli;
type [self]_Type is new [parent]_Type;'

end pattem;

subdomain pattem is
'subtype [self] Not_Nuli is [parent] Not_Nuil;
‘subtype [self]_Type is [parent]_Type;'

end pattem;

for not null type name use ‘[self] Not_Null'’;

Intermetrics, Inc. 81

SAMeDL Language Reference Manual

82

for null type name use ‘[self]_Type';

for data class use enumeration;

for doms type use integer;

for conversion from not null to null use function
‘With_Null';

for conversion from null to not nuil use function
‘Without_Null’;

for context clause use ‘with sql_enumeration_pkg;' ;
for not_null_bearing assign use predefined;

for null_bearing assign use 'Assign’ ;

for null value use 'null_sql_enumeration’;

end SQL_Enumeration_As_Int;

- SQL_Enumeration_As_Char is based on the Ada type SQL_Standard.Char
base domain SQL_Enumeration_As_Char
(width : integer;
_ map = image)
is
domain pattern is
‘type [self]_Not_Null is new [enumeration};’
‘package [self] Pkg is new SQL_Enumeration_Pkg ('
Tself]_not_null)’
‘type [self] Type is new [self]_Pkg.SQL_Enumeration;
end pattern;

derived domain pattern is
type [self]_Not_Null is new [parent] Not_Null;
‘type [self] Type is new [parent]_Type;

end pattemn;

subdomain pattem is
'subtype [self]_Not_Null is [parent] Not_Null;’
'subtype [self]_Type is [parent]_Type;

end pattern;

for not null type name use Jself]_Not_Null’;

for null type name use ‘[self] Type';

for data class use enumeration;

for dbms type use character '([width])";

tor conversion from not null to null use function
'With_Null';

for conversion from null to not nuil use function
'Without_Null';

for context clause use ‘with sqi_enumeration_pkg;' ;
for not_null_bearing assign use predefined;
for null_bearing assign use 'Assign’ ;
for null value use 'null_sql_enumeration’;
end SQL_Enumeration_As_Char,

end SAMeDL_Standard;

Intermetrics, Inc.

Appendix B - SAMeDL System

Appendix B SAMeDL_System

The predefined SAMeDL definitional module SAMeDL_System provides a common location
for the declaration of implementation-defined constants that are specific to a particular
DBMS/Ada compiler platform.

definition module SAMeDL_System is

-- Smallest (most negative) value of any integer type
constant Min_Int is implementation defined;

-- Largest (most positive) value of any integer type
constant Max_lInt is implementation defined;

-- Smallest value of any SQL_Int type

constant Min_SQL _int is implementation defined;
-- Largest value of any SQL_|Int type

constant Max_SQL_Int is implementation defined;

-- Smallest value of any SQL_Smallint type

constant Min_SQL_Smallint is implementation defined;
-- Largest value of any SQL._Smallint type

constant Max_SQL_Smallint is implementation defined;

-- Largest value allowed for the number of significant decimal
-- digits in any floating point constraint
constant Max_Digits is implementation defined;

-- Largest value allowed for the number of significant decimal ~
-- digits in any SQL_Real floating point constraint
constant Max_SQL_Real_Digits is implementation defined;

-- Largest value allowed for the number of significant decimal
-- digits in any SQL_Double_Precision floating point constraint
constant Max_SQL_Double_Precision_Digits is implementation defined;

-- Largest value allowed for the number of characters in a
-- character string constraint
constant Max_SQL_Char_Length is implementation defined;

-- SQL Standard vaiue for successful execution of an SQL DML statement
constant Success is 0;

-- SQL Standard vaiue for data not found

constant Not_Found is 100;

end SAMeDL_System;

Intermetrics, Inc. 83

Appendix C - Standard Support Operations and Specifications

Appendix C Standard Support Operations and
Specifications

The following two sections discuss the SAME standard support packages. The first section
describes how they support the standard base domains, and the second section lists their Ada
package specifications.

C.1 Standard Base Domain Operations

The SAME standard support packages encapsulate the Ada type definitions of the standard base
domains, as well as the operations that provide the data semantics for domains declared using
these base domains. This section describes the nature of the support packages, namely the Ada
data types and the operations on objects of these types.

The SQL standard package SQL_Standard contains the type definitions for a DBMS platform
that define the Ada representations of the concrete SQL data types. A standard base domain
exists in the SAMeDL for each type in SQL_Standard (except for SQLCode_Type), and these
base domains are each supported by one of the SAME standard support packages, In addition to
the above base domains, two standard base domains exist that provide data semantics for Ada
enumeration types.

Each support package defines a not null-bearing and a null-bearing type for the base domain.
The not null-bearing type is a visible Ada type derived from the corresponding type in
SQL_Standard with no added constraints. This type provides the Ada application programmer
with Ada data semantics for data in the database. The null-bearing type is an Ada limited private
type used to support data semantics of the SQL null value. In particular, the null-bearing type
may contain the null value; the not null-bearing type may not.

Domains are derived from base domains by the declaration of two Ada data types, derived from
the types in the support packages, and the instantiation of the generic operations package with
these types. The type derivations and the package instantiation provide the domain with the
complete set of operations that define the data semantics for that domain. These operations are
described below, grouped by data class.

C.1.1 All Domains

All domains derived from the standard base domains make an Assign procedure available to the
application because the type that supports the SQL data semantics is an Ada limited private type.
For the numeric domains, this procedure enforces the range constraints that are specified for the
domain when it is declared. The Ada Constraint_Error exception is raised by these procedures
if the value to be assigned falls outside of the specified range.

A parameterless function named Null SQL <type> is available for all domains as well. This

function returns an object of the null-bearing type of the appropriate domain whose value is the
SQL null value.

Every domain has a set of conversion functions available for converting between the not null-
bearing type and the null-bearing type. The function With Null converts an object of the not
null-bearing type and the null-bearing type. The function Without Null converts converts an
object of the null-bearing type to an object of the no null-bearing type. Without Null will raise

Intermetrics, Inc. 85

SAMeDL Language Reference Manual

the Null Value Error exception if the value of the object that it is converting is the SQL null
value, since an object of the not null-bearing type can never be null.

Two testing functions are available for each domain as well. The boolean functions /s_Null and
Not_Null test objects of the null-bearing type, returning the appropriate boolean value indicating
whether or not an object contains the SQL null value.

Additionally, all domains provide two sets of comparison operators that operate on objects of the
null-bearing type. The first set of operators returns boolean values, and the second set of
operators returns objects of the type Boolean_With_Unknown, defined in the support package
SQL_Boolean_Pkg (see Section C.2.3), which implements three-valued logic. The boolean
comparison operators are =, /=, <, >, <=, and >=, and return the value False if either of the
objects contains the SQL null value. Otherwise, these operators perform the comparison, and
return the appropriate boolean result. The Boolean_With_Unknown comparison operators are
Equals and, <, >, <=, and >=, and return the value Unknown if either of the objects contains
the SQL null value. Otherwise, these operators perform the comparison, and return the
Boolean_With_Unknown values True or False.

C.1.2 Numeric Domains

In addition to the operations mentioned above, all numeric domains provide unary and binary
arithmetics operations for the null-bearing type of the domain. The subprograms that implement
these operations provide the data semantics of the SQL null value with respect to these anthmetic
operations. Specifically, any arithmetic operation applied to a null value results in the null value.
Otherwise, the operation is defined to be the same as the Ada operation. The unary operations
that are provided are +, -, and Abs. The binary operations include +, -, *, and /. Finally, all
numeric domains provide the exponentiation operation (**).

C.1.3 Int and Smallint Domains

Int and Smallint domains provide the application programmer with the Ada functions Mod and
Rem that operate on objects of the null-bearing type. Again, the subprograms that implement
these operations provide the data semantics of the SQL null value with respect to these arithmetic
operations. As with the other arithmetic operation, Mod and Rem return the null value when
applied to an object containing the null value. Otherwise, they are defined to be the same as the
Ada operation.

These domains also make /mage and Value functions available to the application programmer.
Both of these functions are overloaded; meaning that there are /mage and Value functions that
operate on objects of both the not null-bearing and the null-bearing types of the domain. The
Image function converts an object of an /nt or Smallint domain to a character representation of
the integer value. The Value function converts a character representation of an integer value to
an object of an Int or Smallint domain. These functions perform the same operation as the Ada
attribute functions of the same name, except that the character set of the character inputs and
outputs is that of the underlying SQL_Standard.Char character set. If the /mage and Value
functions are applied to objects of the null-bearing type containing the null value, a null character
object and a null integer object are returned respectively.

C.1.4 Character Domains

In addition to the operations provided by all domains, character domains provide the application
programmer with some string manipulation and string conversion operations.

86 Intermetrics. Inc.

Appendix C - Standard Support Operations and Specifications

Character domains provide two string manipulation functions that operate on objects of the null-
bearing type. The first one is the concatenation function (&). If either of the input character
objects contains the null value, then the object returned contains the null value. Otherwise this
operation is the same as the Ada concatenation operation. The other function is the Substring
function, which is patterned after the substring function of SQL2. This function returns the
portion of the input character object specified by the Start and Length index inputs. An Ada
Constraint_Error is raised if the substring specification is not contained entirely within the input
string.

The remaining operations provided by the character domains are conversion functions. A
To_String and a To_Unpadded_String function exist for both the not null-bearing and the null-
bearing types of the domain. The To_String function converts its input, which sxists as an
object whose value is comprised of characters from the underlying character set of the platform,
to an object of the Ada predefined type Standard.String. If conversion of a null-bearing object
containing the null value is attempted, the Null_Value Error exception is raised. The
To_Unpadded_String functions are identical in every way to the To_String functions except
that trailing blanks are stripped from the value.

The Without Null Unpadded function is identical to the Without_Null function, described in
section C.1.1 above, except that trailing blanks are stripped from the value.

Two functions exist that convert objects of the Ada predefined type Standard.String to objects
of the not null-bearing and null-bearing types of the domain. The To_SQL Char_Not Null
function converts an object of type Standard.String to the not null-bearing type of the domain.
The To_SQL _Char function converts an object of type Standard.String to an object of the null-
bearing type.

Finally, character domains provide the function Unpadded_Length, which returns the length of
the character string representation ‘without trailing blanks. This function operates on objects of
the null-bearing type. and raises the Null Value_Error exception if the input object contains the
null value.

C.1.5 Enumeration Domains

Enumeration domains provide functions for the null-bearing type that are normally available as
Ada attribute functions for the not null-bearing type. The Image and Value functions have the
same semantics as described for /nt and Smallint domains in Section C.1.3 above, except that
they operate on enumeration values rather than integers.

The Pred and Succ functions operate on objects of the null-bearing type, and return the previous
and next enumeration literals of the underlying enumeration type, respectively. If these functions
are applied to objects containing the null value, an object containing the null value is returned.

The last two functions are the Pos and Val functions. These functions also operate on objects of
the null-bearing type. Pos returns a value of the Ada predefined type Standard.Integer
representing the position (relative to zero) of the enumeration literal that is the value of the input
object. If the input object contains the null value, then the Null_Value Error exception is
raised. The Val function accepts a value of the predefined type StandardInteger and returns the
enumeration literal whose position in the underlying enumeration type is specified by that value.
If the input integer value falls outside the range of available enumeration literals, the Ada
Constraint_Error is raised.

Intermerrics, Inc. 87

SAMeDL Language Reference Manual

C.1.6 Boolean Functions

The SAME standard support package SQL_Boolean_Pkg defines a number of boolean functions,
namely not, and, or, and xor, which implement three-valued logic as defined in [SQL]. All of
these functions operate on two input parameters of the type Boolean With_Unknown, and return
a value of that type.

This support package also provides a conversion function, which converts the input of the type
Boolean_With_Unknown to a value of the Ada predefined type boolean. If the input object has
the value Unknown, then the Null_Value_Error exception is raised.

Finally, the package provides three testing functions that return boolean values. These functions,
Is True, Is_False, and Is_Unknown, return the value true if the input passes the test; otherwise
functions return the value false.

C.1.7 Operations Available to the Application

Operand Type Exceptions
Left Right Result
All Domains
Null_SQL_<type> _Type
With_Null _Not_Null _Type
Without_Null _Type' _Not_Nuli2 Null_Value_Ermor
Is_Null, Not_Null _Type Boolean
Assign® _Type _Type Constraint_Error
...... Equals, Not_Equals _Type _Type B_W_U¢
<, >, <=, >= _Type _Type B W_U
=, /= >, <, >=, <= _Type _Type Boolean
Numeric Domains
unary +/-, Abs _Type _Type
+ - 1" _Type _Type _Type
b _Type Integer _Type
Int and Smallint Domains
Mod, Rem _Type _Type _Type
Image _Type SQL_Char
Image _Not_Null SQL_ChrNN3
Value SQL_Char _Type
Value SQL_ChrNN _Not_Nuli
Character Domains
Without_Null_Unpadded _Type _Not_Nuli Null_Value_Ermor
To_String _Not_Null String
To_String _Type String Null_Value_Emor
To_Unpadded_String _Not_Null String
To_Unpadded_String _Type String Null_Value_Ermor
To_SQL_Char_Not_Null String _Not_Nuli
To_SQL_Char String _Type
Unpadded_Length _Type SQL_u_L?® Nuil_Value_Ermor
Substring'® _Type _Type Constraint_Error
& _Type _Type _Type

Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

Enumeration Domains

Pred, Succ _Type _Type
Image _Type SQL_Char
Image _Not_Null SQL_ChmN
Pos _Type integer Null_Value_Error
Val integer _Type
Value : SQL_Char _Type
Value SQL_ChrNN _Not_Null
Boolean Functions
not B_ WU Boolean
and, or, xor B WU B_W_U Boolean
To_Boolean B WU Boolean Null_Value_Error
Is_True B_ WU BWwWU Boolean
Is_False BwU B WU Boolean
Is_Unknown B WU B WU Boolean
1. "_Type" represents the type in the abstract domain of which objects that may be null are
declared.
2. "_Not_Null" represents the type in the abstract domain of which objects that are not null .
may be declared.

"Assign" is a procedure. The result is returned in object "Left".

3

4. "B_W_U"is an abbreviation for Boolean_With_Unknown.
5. "SQL_ChrNN" is an abbreviation for SQL_Char_Not_Null.
9

"SQL_U_L" is an abbreviation for SQL_Char_Pkg subtype SQL_Unpadded_Length.

10. Substring has two additional parameters: Start and Length, which are both of the
SQL_Char_Pkg subtype SQL_Char_Length.

C.2 Standard Support Package Specifications
C.2.1 SQL_Standard

The package SQL_Standard is defined in [ESQL] and is reproduced here for information only.
package Sql_Standard is

package Character_Set renames csp;
subtype Character_Type is Character_Set.cst;
type Char is array (positive range <>)
of Character_Type;
type Smallint is range bs .. ts;
type Intis range bi .. ti;
type Real is digits dr;
type Double_Precision is digits dd;
type Sqicode_Type is range bsc .. tsc;
subtype Sql_Error is Sqicode_Type range Sqicode_Type'FIRST .. -1;
subtype Not_Found is Sqicode_Type range 100..100;
subtype Indicator_Type is t,

Intermetrics, Inc. 89

SAMeDL Language Reference Manual

-- ¢sp is an implementator-defined package and cst is an

-- implementor-defined character type. bs, tw, bi, ti, dr, dd, bsc,

-- and tsc are implementor-defined integral values. t isint or

-- smallint corresponding to an implementor-defined <exact_numeric_type>
-- of indicator parameters.

end Sql_Standard;

C.23 SQL_Boolean_Pkg
package SQL_Boolean_Pkg is
type Boolean_with_Unknown is (FALSE, UNKNOWN, TRUE);
-| Three valued Logic operations

-| three-val X three-val => three-val
-

~-|A B AandB AorB AxorB notA
-lT T T T F F
-|T F F T T F
-{F F F F F T
-T U u T u F
-lF U F u u T
-l U u u u u

function "not” (Left : Boolean_with_Unknown) return Boolean_with_Unknown;
function "and” (Left, Right : Boolean_with_Unknown) retum Boolean_with_Unknown;
function "or” (Left, Right : Boolean_with_Unknown) return Boolean_with_Unknown;
function "xor” (Left, Right : Boolean_with_Unknown) return Boolean_with_Unknown;

--- three-val => bool or exception---
function To_Boolean (Left : Boolean_with_Unknown) return Boolean;

- three-val => bool---

function Is_True (Left : Boolean_with_Unknown) retumn Boolean;
function Is_False (Left : Boolean_with_Unknown) return Boolean;
function Is_Unknown (Left : Boolean_with_Unknown) retumn Booiean;

end SQL_Boolean_Pkg;

C.24 SQL_Int_Pkg
with SQL_Standard;
with SQL_Boolean_Pkg; use SQL_Boolean_Pkg;
with SQL_Char_Pkg; use SQL_Char_Pkg;
package SQL_iInt_Pkg is
type SQL_Int_not_null is new SQL_Standard.int;

- Possibly Null Integer-—
type SQL_Int is limited private;

function Null_SQL_int return SQL_int;

2% Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

--| This pair of functions convert between the null-bearing and non-nuli-bearing types.

function Without_Null_Base(Value : SQL_Int) retum SQL_Int_Not_Null;
function With_Null_Base(Vaiue : SQL_int_Not_Nulf) return SQL_lInt;

-| With_Nuli_Base raises Null_Value_Error if the input value is null

-| This procedure Implements range checking. Note: It is not meant to be used directly
-] by application programmers. See the generic package SQL_Int_Ops.
-| Raises constraint_error If not (First <= Right <= Last)

procedure Assign_with_check (
Left : in out SQL_Int; Right : SQL_int;
First, Last : SQL_int_Not_Null);

-| The following functions implement three valued arithmetic. If either input to any of
-| these functions is null, the function returns the null vaiue; otherwise they perform
-| the indicated operation. These functions raise no exceptions.

function "+"(Right : SQL_Int) return SQL_lInt;

function "-"(Right : SQL_Int) return SQL_int;

function "abs"(Right : SQL_!nt) return SQL_{nt;

function "+"(Left, Right : SQL_Int) return SQL_int;

function ""(Left, Right : SQL_Int) return SQL_Int;

function "-"(Left, Right : SQL_Int) retum SQL_Int;

function “/"(Left, Right : SQL_Int) return SQL_lnt;

function "mod” (Left, Right : SQL_Int) return SQL__Int;
function "rem" (Left, Right : SQL_Int) return SQL_int;
function """ (Left : SQL_Int; Right: Integer) return SQL_Int;

-| simulation of 'IMAGE and 'VALUE that return/take SQL_Char{_Not_Null] instead
-| of string

tunction IMAGE (Left : SQL_Int_Not_Null) return SQL_Char_Not_Null;
function IMAGE (Left : SQL_Int) return SQL_Char;
function VALUE (Left : SQL_Char_Not_NUII) retum SQL_Int_Not_Null;
function VALUE (Left : SQL_Char) return SQL_Int;

-| Logical Operations
- type X type => Boolean_with_unknown

-| These functions implement three valued logic. If either input is the nuil value,
-| the functions return the truth value UNKNOWN; otherwise they perform the
-| indicated comparison. These functions raise no exceptions.

function Equals (Left, Right : SQL_Int) return Boolean_with_Unknown;
function Not_Equals (Left, Right : SQL_im) return Boolean_with_Unknown;
function "<" (Left, Right : SQL_Int) return Boolean_with_Unknown;

function ">" (Left, Right : SQL_Int) return Boolean_with_Unknown:

function "<=" (Left, Right : SQL_Int) return Boolean_with_Unknown;
function ">=" (Left, Right : SQL_Int) return Boolean_with_Unknown;

-] type => boolean
function Is_Nuli(Value : S(:)L_lm) return Boolean;

Intermetrics, Inc. 91

SAMeDL Language Reference Manual

function Not_Null(Value : SQL_Int) return Boolean;

--| These functions of class type => boolean Equate UNKNOWN with FALSE. That is,
--| they return TRUE only when the function returns TRUE. UNKNOWN and FALSE
-| are mapped to FALSE.

function "=" (Left, Right : SQL_Int) return Boolean;
function "<" (Left, Right : SQL_Int) return Boolean;
function ">" (Left, Right : SQL_Int) return Boolean;
function "<=" (Left, Right : SQL_Int) retum Boolean;
function ">=" (Left, Right : SQL_Int) return Boolean;

--} This generic Is instantiated once for every abstract domain based on the SQL type
--| Int. The three subprogram formal parameters are meant to default to the programs
--| declared above. That Is, the package should be Instantiated in the scope of a use

--| clause for SQL_Int_Pkg. The two actual types together form the abstract domain.

-| The purpose of the generic Is to create functions which convert between the two

-| actual types and a procedure which implements a range constrained assignment for
--| the null-bearing type. The bodles of these subprograms are calls to subprograms
-} declared above and passed as defauits to the generic.

generic
type With_Nuill_type is limited private;
type Without_null_type is range <>;
with function With_Null_Base(Value : SQL_Int_Not_Null) return With_Null_Type is <>;
with function Without_Null_Base(Value : With_Null_Type) retumn SQL_Int_Not_Null is <>;
with procedure Assign_with_check (
Left : in out With_Null_Type;
Right : With_Null_Type;
First, Last : SQL_Int_Not_Null) is <>;
package SQL_Int_Ops is
function With_Null (Value : Without_Nuil_type) return With_Null_type;
function Without_Null (Value : With_Nuli_Type) return Without_Null_type;
procedure Assign (Left : in out With_null_Type; Right : in With_null_type);
end SQL_Int_Ops;

private
-| not shown

end SQL_Int_Pkg;

C.25 SQL_Smallint_Pkg
with SQL_Standard;
with SQL_Boolean_Pkg; use SQL_Boolean_Pkg;
with SQL_Char_Pkg; use SQL_Char_Pkg;
package SQL_Smallint_Pkg is
type SQL_Smallint_not_null is new SQL_Standard.Smaliint;

- Possibly Null integer——
type SQL_Smallint is limited private;

function Null_SQL_Smallint return SQL_Smallint; -

92 Intermetrics, Inc.

pr———

Appendix C - Standard Support Operations and Specifications

—| this pair of functions converts between the null-bearing and non-null-bearing types

function Without_Null_Base(Value : SQL_Smallint) return SQL_Smallint_Not_Null;
function With_Null_Base(Value : SQL_Smallint_Not_Null) retumn SQL_Smallint;

-] With_Null_Base raises Null_Value_Error if the input value is null

--| This procedure implements range checking. Note: it iIs not meant to be used directly
-| by application programmers. See the generic package SQL_Smallint_Ops.
-| Raises constraint_error If not (First <= Right <= Last)

procedure Assign_with_check (
Left : in out SQL_Smallint;
Right : SQL_Smallint;
First, Last : SQL_Smallint_Not_Null);

~-| The following functions implement three valued arithmetic. If either input to any of
-| these functions is null, the function returns the null value; otherwise they perform
-| the indicated operation. These functions raise no exceptions.

function "+"(Right : SQL_Smallint) retum SQL_Smallint;

function "-"(Right : SQL_Smallint) return SQL_Smallint;

function "abs"(Right : SQL_Smallint) return SQL_Smallint;

function "+"(Left, Right : SQL_Smallint) return SQL_Smaliint;

function ™"(Left, Right : SQL_Smallint) retum SQL_Smallint;

function "-"(Left, Right : SQL_Smallint) return SQL_Smallint;
function "/"(Left, Right : SQL_Smallint) return SQL__Smallint;

function: "mod” (Left, Right : SQL_Smallint) return SQL_Smallint;
function "rem"” (Left, Right : SQL_Smallint) return SQL_Smallint;
function ™*" (Left : SQL_Smailint; Right: Integer) return SQL_Smallint;

-| simulation of 'IMAGE and "VALUE that return/take SQL_Char{_Not_Null] instead
-~} of string .

function IMAGE (Left : SQL_Smaliint_Not_Null) return SQL_Char_Not_Null;
function IMAGE (Left : SQL_Smallint) return SQL_Char;
function VALUE (Left : SQL_Char_Not_Null) return SQL_Smallint_Not_Nuli;
function VALUE (Left : SQL_Char) return SQL_Smallint;

-| Logical Operations
-| type X type => Boolean_with_unknown

-| These functions implement three valued logic. If either Input is the null value,
-| the functions return the truth value UNKNOWN; otherwise they perform the
- indicated comparison. These functions raise no exceptions.

function Equals (Left, Right : SQL_Smallint) return Boolean_with_Unknown;
function Not_Equals (Left, Right : SQL_Smallint) return Boolean_with_Unknown;
function "<" (Left, Right : SQL_Smallint) retum Booiean_with_Unknown;
function ">" (Left, Right : SQL_Smallint) return Boolean_with_Unknown;
function "<=" (Left, Right : SQL_Smallint) retum Boolean_with_Unknown;
function ">=" (Left, Right : SQL_Smallint) return Boolean_with_Unknown;

-} type => boolean

Intermetrics, Inc. . 93

SAMeDL Language Reference Manual

function Is_Nuil(Value : SQL_Smallint) return Boolean;
function Not_Null(Value : SQL -Smallint) retum Boolean;

-| These functions of class type => boolean. Equate UNKNOWN with FALSE. That is,
-| they return TRUE only when the function returns TRUE. UNKNOWN and FALSE

function "=" (Left, Right : SQL_Smallint) return Boolean;
function "<" (Left, Right : SQL_Smallint) return Boolean;
function ">" (Left, Right : SQL_Smallint) return Boolean;
function "<=" (Left, Right : SQL_Smallint) return Boolean;
function ">=" (Left, Right : SQL_Smallint) return Boolean;

-| This generic is instantiated once for every abstract domain based on the SQL type
-| Smallint. The three subprogram formal parameters are meant to default to the

--| programs declared above. That Is, the package should be instantiated in the scope
-| of a use clause for SQL_Smallint_Pkg. The two actual types together form the

-| abstract domain. The purpose of the generic Is to create functions which convert

-| between the two actual types and a procedure which implements a range

-| constrained assignment for the null-bearing type. The bodles of these subprograms
--| are calls to subprograms declared above and passed as defaults to the generic.

generic

type With_Null_type is limited private;
type Without_nuli_type is range <>;
with function With_Null_Base(Value : SQL_Smallint_Not_Null) return With_Null_Type is <>;
with function Without_Null_Base(Value : With_Null_Type)
return SQL_Smaliint_Not_Null is <>;

with procedure Assign_with_check (

Left : in out With_Null_Type;

Right : With_Null_Type;

First, Last : SQL_Smaliint_Not_Null) is <>;

package SQL_Smallint_OPs is

function With_Null (Value : Without_Null_type) return With_Null_type;
function Without_Null (Value : With_Null_Type) retum Without_Null_type;
procedure Assign (Left : in out With_nuill_Type; Right : in With_null_type);

end SQL_Smallint_ops;

private

-} not shown

end SQL_Smallint_Pkg;

C.2.6 SQL_Real_Pkg

94

with SQL_Standard;
with SQL_Boolean_Pkg; use SQL_Boolean_Pkg;
package SQL_Real_Pkgis

type SQL_Real_Not_Null is new SQL_Standard.Real;

- Possibly Null Real—
type SQL_Real is limited private;

function Null_SQL_Real return SQL_Real;

Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

-| this pair of mnctlor_ls converts between the null-bearing and non-null-bearing types

function Without_Null_Base(Value : SQL_Real) return SQL_Real_Not_Nuil;
function With_Null_Base(Value : SQL_Real_Not_Null) return SQL_Real;

-} With_Null_Base railses Null_Value_Error If the input value Is null

-| This procedure implements range checking. Note: it Is not meant to be used directly
-| by application programmers. See the generic package SQL_Real_Ops.
-| Railses constraint_error if not (First <= Right <= Last)

procedure Assign_with_Check (
Left : in out SQL_Real;
Right : SQL_Real;
First, Last : SQL_Real_Not_Null);

~| The following functions implement three valued arithmetic. !f either input to any of
-| these functions is null, the function returns the null vaiue; otherwlise they pertorm
-| the indicated operation. These functions ralse no exceptions.

function "+"(Right : SQL_Real) retum SQL_Real;

function "-"(Right : SQL_Real) retum SQL_Real;

function "abs"(Right : SQL_Real) return SQL_Real;

function "+"(Left, Right : SQL_Real) return SQL_Real;

function "*"(Left, Right : SQL_Real) return SQL_Real;

function "-"(Left, Right : SQL_Real) return SQL_Real;

function "/"(Left, Right : SQL_Real) return SQL_Real;

function "™*"(Left : SQL_Real; Right : integer) retum SQL_Real;

--| Logical Operations
- type X type => Boolean_with_unknown

-| These functions implement three valued logic. If elther input is the null value,
-| the functions return the truth value UNKNOWN; otherwise they perform the
-] indicated comparison. These functions raise no exceptions.

function Equals (Left, Right : SQL_Real) return Boolean_with_Unknown;
function Not_Equals (Left, Right : SQL_Real) return Boolean_with_Unknown;
function "<" (Left, Right : SQL_Real) retum Boolean_with_Unknown;

function ">" {Left, Right : SQL_Real) return Boolean_with_Unknown;

function "<=" (Left, Right : SQL_Real) retum Boolean_with_Unknown;
function ">=" (Left, Right : SQL_Real) retum Boolean_with_Unknown;

-| type => boolean
function is_Null(Value : SQL_Real) return Boolean;
function Not_Null(Value : SQL_Real) retum Boolean;

-} These functions of class type => boolean
-| Equate UNKNOWN with FALSE. That is, they return TRUE only when the tunction
-| returns TRUE. UNKNOWN and FALSE are mapped to FALSE.

function "=" (Left, Right : SQL_Real) retumn Boolean;
function "<" (Left, Right : SQL_Real) return Boolean;
function ">" (Left, Right : SQL_Real) return Boolean;
function "<=" (Left, Right : SQL_Real) return Boolean;
function ">=" (Left, Right : SQL_Real) return Boolean;

Intermetrics, Inc. 95

SAMeDL Language Reference Manual

--| This generic is instantlated once for every abstract domain based on the SQL type
-| Real. The three subprogram formal parameters are meant to default to the programs
-| declared above. That is, the package should be instantiated in the scope of a use

-| clause for SQL_Real_Pkg. The two actual types together form the abstract domain.
-| The purpose of the generic is to create functions which convert between the two

--] actual types and a procedure which implements a range constrained assignment for
--| the null-bearing type. The bodles of these subprograms are calls to subprograms

--| declared above and passed as defaults to the generic.

generic
type With_Null_type is limited private;
type Without_null_type is digits <>;
with function With_Null_Base(Value : SQL_Real_Not_Null) return With_Null_Type is <>;
with function Without_Null_Base(Value : With_Null_Type) return SQL_Real_Not_Null is <>;
with procedure Assign_with_check (
Left : in out With_Nulil_Type;
Right : With_Null_Type;
First, Last : SQL_Real_Not_Null) is <>;

package SQL_Real_Ops is
function With_Null (Value : Without_Null_type) return With_Null_type;
function Without_Null (Value With_Null_Type) return Without_Null_type;
procedure Assign (Left : in out th Null_Type; Right : in With_Null_type);
end SQL_Real_Ops:
private
-| not shown

end SQL_Real_Pkg;

C.2.7 SQL_Double_Precision_Pkg

C.28 SQL_Char_Pkg

96

with SQL_System; use SQL_System;

with SQL_Boolean_Pkg; use SQL_Boolean_Pkg;
with SQL_Standard;

package SQL_Char_Pkg is

subtype SQL_Char_Length is natural range 1 .. MAXCHRLEN;
subtype SQL_Unpadded_Length is natural range 0 .. MAXCHRLEN;

type SQL_Char_Not_Null is new SQL_Standard.Char;
type SQL_Char(Length : SQL_Char_Length) is limited private;

function Null_SQL_Char return SQL_Char;

-| The next three functions convert between null-bearing and non nuil-bearing-types.
-| Without_Null_Base and With_Null_Base are inverses (mod. null values).

--| See also SQL_Char_Ops generic package below

function With_Null_Base(Value : SQL_Char_Not_Null) return SQL_Char;
function Without_Null_Base(Value : SQL_Char) return SQL_Char_Not_Null;

Intermetrics, Inc.

Appendix C - Standard Support Operations and Specifications

function Without_Null_Unpadded_Base(Value : SQL_Char) return SQL_Char_Not_Null;

-| Without_Null_Unpadded_Base removes tralling blanks from the input
-| Axiom: unpadded_Length(x) = Without_Null_Unpadded_Base(x)'Length
-| Both Without_Null_Base and Without_Null_Unpadded_Base ralse

-| null_value_error if x Is null

function Unpadded_Length (Value : SQL_Char) retum SQL_Unpadded_Length;

-| The next six functions convert between Standard.String
-| types and the SQL_Char and SQL_Char_Not_Null types

function To_String (Value : SQL_Char_Not_Null) return String;

function To_String (Value : SQL_Char) return String;

function To_Unpadded_String (Value : SQL_Char_Not_Null) return String;
function To_Unpadded_String (Value : SQL_Char) return String;

function To_SQL_Char_Not_Null (Value : String) return SQL_Char_Not_Nuli;
tunction To_SQL_Char (Value : String) returmn SQL_Char;

-| Assignment operator for "null-bearing” type
procedure Assign (Left : out SQL_Char; Right : SQL_Char);

-| Substring(x,k,m) returns the substring of x starting at position k (relative to 1) with
-| length m. Returns null value if x Is null
-| Raises constrainmt_error if Start < 1 or Length < 1 or Start + Length - 1 > x.Length

function Substring (Vaiue : SQL_Char; Start, Length : SQL_Char_Length) return SQL_Char;

-} "&" returns null if either parameter Is null; otherwise performs concatenation In the
-| usual way, preserving all blanks. May raise constraint_error implicitly if result Is too
—-| large (L.e., greater than SQL_Char_Length'Last

function "&" (Left, Right : SQL_Char) return SQL_Char;

-| Logical Operations

-| type X type => Boolean_with_unknown--

-] The comparison operators return the boolean value UNKNOWN if either

-| parameter is null; otherwise, the comparison is done in accordance with

-] ANSI X3.135-1986 para 5.11 general rule 5; that Is, the shorter of the two string
- parameters Is eftectively padded with blanks to be the length of the longer

-| string and a standard Ada comparison Is then made

function Equals (Left, Right : SQL_Char) return Boolean_with_Unknown;
function Not_Equals (Left, Right : SQL_Char) return Boolean_with_Unknown;
function "<" (Left, Right : SQL_Char) return Boolean_with_Unknown;

function ">" (Left, Right : SQL_Char) return Boolean_with_Unknown;

function "<=" (Left, Right : SQL_Char) return Boolean_with_Unknown;
function ">=" (Left, Right : SQL_Char) return Boolean_with_Unknown;

-| type => boolean--

function Is_Null{Value : SQL_Char) return Boolean;
function Not_Null(Value : SQL_Char) return Boolean;

-} These functions of class type => boolean equate UNKNOWN with FALSE. That Is,
—| they return TRUE only when the function returns TRUE. UNKNOWN and FALSE
-| are mapped to FALSE.

Intermetrics, Inc. 97

SAMeDL Language Reference Manual

function "=" (Left, Right : SQL_Char) return Boolean;
function "<" (Left, Right : SQL_Char) re* wn Boolean;
function ">" (Left, Right : SQL_Char) re..m Boolean;
function "<=" (Left, Right : SQL_Char) retumn Boolean;
function ">=" (Left, Right : SQL: Char) retum Boolean;

-| The purpose of the following generic is to generate conversion functions between a
-| type derived from SQL_Char_Not_Null, which are effectively Ada strings and a type
-| derived from SQL_Char, which mimic the behavior of SQL strings. The subprogram
-| formals are meant to default; that Is, this generic should be instantiated in the scope
--| of an use clause for SQL_Char_Pkg.

generic
type With_Null_Type is limited private;
type Without_Null_Type is array (positive range <>) of sql_standard.Character_type;
with function With_Null_Base (Value: SQL_Char_Not_Nuil) return With_Null_Type is <>,
with function Without_Null_Base (Value: With_Nuil_Type) return SQL_Char_Not_Null is <>,
with function Without_Null_Unpadded_Base (Value: With_Null_Type)
return SQL_Char_Not_Null is <>;

package SQL_Char_Ops is

function With_Null (Value : Without_Null_Type) return With_Null_Type;

function Without_Null (Value : With_Null_Type) return Without_Null_Type;

function Without_Null_Unpadded (Value : With_Null_Type) return Without_Null_Type;
end SQL_Char_Ops;
private

-| not shown

end SQL_Char_Pkg;

C.29 SQL_Enumeration_Pkg

98

with SQL_Boolean_Pkg- 11se SQL_Boolean_Pkg:
with SQL_Char_Pkg; use SQL_Char_Pkg;
generic

type SQL_Enumeration_Not_Null is (<>);
package SQL_Enumeration_Pkg is

-| - Possibly Null Enumeration---
type SQL_Enumeration is limited private;

function Null_SQL_Enumeration retum SQL_Enumeration;
-| This pair of functions convert between the null-bearing and non-null-bearing types.

function Without_Null(Value : in SQL_Enumeration) return SQL_Enumeration_Not_Nuill;
function With_Null(Value : in SQL_Enumeration_Not_Null) return SQL_Enumeration;
-| With_Null raises Null_Value_Error if the input value is null

-| Assignment operator for "null-bearing” type

Interm~:rics, Inc.

Appendix C - Standard Support Operations and Specifications

procedure Assign (Left : in out SQL_Enumeration; Right : in SQL_Enumeration);

--| Logicai Operations
-| type X type => Boolean_with_unknown

-| These functions implement three valued logic. If either Input Is the null value,
- the functions return the truth value UNKNOWN; otherwise they perform the
-] Iindicated comparison. These functions raise no exceptions

function Equals (Left, Right : SQL_Enumeration) return Boolean_with_Unknown;
function Not_Equals (Left, Right : SQL_Enumeration) return Boolean_with_{Unknown;
function "<" (Left, Right : SQL_Enumeration) return Boolean_with_Unknown;

function ">" (Left, Right : SQL_Enumeration) retumn Boolean_with_Unknown;
function "<=" (Left, Right : SQL_Enumeration) return Boolean_with_Unknown;
function ">=" (Left, Right : SQL_Enumeration) return Boolean_with_Unknown;

-| type => boolean

function Is_Null (Value : SQL_Enumeration) return Boolean;
function Not_Null (Value : SQL_Enumeration) return Boolean;
function "=" (Left, Right : SQL_Enumeration) return Boolean;
function "<" (Left, Right : SQL_Enumeration) retum Boolean;
function ">" (Left, Right : SQL_Enumeration) retumn Boolean;
function "<=" (Left, Right : SQL_Enumeration) return Boolean;
function ">=" (Left, Right : SQL_Enumeration) return Boolean;

-| 'Pred, 'Succ, ‘image, ‘Pos, ‘Val, and 'Value attributes of the

-| SQL_Enumeration_Not_Null type, passed In, for the associated SQL_Enumeration
-] (null) type. They all raise the Null_Value_Error exception If a null value Is passed in.
-|

-| Pred raises the Constraint_Error exception if the value passed in Is equal to

- SQL_Enumeration_Not_Null'Last.

--| Succ raises the Constraint_Error exception If the value passed in Is equal to

- SQL_Enumeration_Not_Null'First.

-| Val raises the Constraint_Error exception if the value passed In is not In the range
-] P'POS(P'FIRST)..P'POS(P'LAST) for type P.

-] Value raises the Constraint_Error exception If the sequence of characters passed In
-| does not have the syntax of an enumeration literal for the instantiated

- enumeration type.

function Pred (Value : in SQL_Enumeration) return SQL_Enumeration;

function Succ (Value : in SQL_Enumeration) return SQL_Enumeration;

function Pos (Value : in SQL_Enumeration) return Integer;

function Image (Value : in SQL_Enumeration) return SQL_Char;

function image (Value : in SQL_Enumeration_Not_Null) return SQL_Char_Not_Null;
function Val (Value : in Integer) return SQL_Enumeration;

function Value (Value : in SQL_Char) return SQL_Enumeration;

function Value (Value : in SQL_Char_Not_Null) return SQL_Enumeration_Not_Null;

private
-| not shown

end SQL_Enumeration_Pkg;

Intermetrics, Inc. 99

Appendix D - Transform Chart

Appendix D Transform Chart

Function Section Input

AdaNAME

AdaType

COMP,,,

DATACLASS

DBLngNAME

DBLeLg v 4a

DBMS_TYPE

4.1.5
5.6
5.7
58
5.10

4.14
5.6
5.7
5.8

Intermetrics, Inc.

Output _ Output is
Record Declaration Ada Identifier Default name of the row record formal
parameter
Parameter Ada Identifier Name of the parameter in the Ada procedure
declaration
Select Parameter Ada Identifier Name of the component in the Ada row
record type
Insert Column Ada Identifier Name of the component in the Ada row
Specification record type
Value Expression Ada Identifier Default name for record component if the
expression appears as a select parameter
Constant Declaration Ada Identifier Name of the type in Ada declaration of
constant
Parameter Ada Identifier Name of the type of the parameter in the
Ada procedure declaration
Select Parameter Ada Identifier Name of the type of the component in the
Ada row record type
Insert Column Ada Identifier Name of the type of the component in the
Specification Ada row record type
Select Parameter Ada Record Used in declaration of the Ada row record
Component type
Insert Column
Specification
Select Parameter Ada Record Used in declaration of the Ada row record
Component type
Literal Data Class Data class of the literal
Base Domain Data Class Data class of the base domain
Domain Data Class Data class of the domain or domain
Domain Parameter parameter
Constant Data Class Data class of the constant
Column Data Class Data class of the column
Parameter Data Class Data class of the parameter
Value Expression Data Class Data class of the expression
Dblength Phrase Ada Identifier Name of dblength parameter
: undefined if no dblength phrase
Select Parameter Ada Record Row record component used for dblength
Component data
Domain SQL Data Type SQL data type to be used at the database

interface with an object of the specified
domain

101

SAMeDL Language Reference Manual

Function Section Input Qutput Output Is
DOMAIN 413 Domain Parameter NO_DOMAIN NO_DOMAIN is the domain of a domain
parameter
4.1.4 Constant Domain Domain of the constant (NO_DOMAIN for
universal constants)
421 Column Domain Domain of the column
5.6 Parameter Domain Domain of the parameter
5.10 Value Expression Domain Domain of the expression (NO_DOMAIN
for universal constants)
INDIC v auE 56 Parameter SQL Identifier Name of an SQL indicator parameter
5.7 Select Parameter SQL Identifier Name of an SQL indicator parameter
58 Insert Column SQL Identifier Name of an SQL indicator parameter
Specification
INDICgq,, 56 Parameter SQL Indicator Param Name of an SQL indicator parameter
57 Select Parameter SQL Indicator Param Name of an SQL indicator parameter
58 Insert Column SQL Indicator Param Name of an SQL indicator parameter
Specification
LENGTH 24 Literal Natural Number Length of the literal (NO_LENGTH if not
char literal)
413 Domain Natural Number Length of objects in domain or domain
Domain Parameter parameter value (NO_LENGTH if not
char domain or parameter)
4.14 Constant Natural Number Length of the constant (NO_LENGTH if not
: char literal)
42.1 Column Natural Number Length of domain of column
5.6 Parameter Natural Number Length of domain of parameter
5.10 Value Expression Natural Number Length of expression (NO_LENGTH if not
char literal)
MODE 56 Parameter Ada Mode Mode of the parameter in the Ada procedure
declaration
PARM,4, 5.6 Parameter Ada Parameter . Ada parameter declaration in the Ada
Declaration procedure declaration
PARMg 59 Into Clause Ada Identifier Name of row record parameter
Insernt From Clause
PARMgq, 56 Parameter SQL Parameter An SQL parameter declaration
5.7 Select Parameter SQL Parameter An SQL parameter declaration
5.8 Insert Column SQL Parameter An SQL parameter declaration
Specification
102 Intermetrics, Inc.

Appendix D - Transform Chart

Function Section___Input Output Output Is
SCALE 24 Literal Natural Number Scale of the literal INO_SCALE if not a
numeric literal)
4.13 Domain Natural Number Scale of objects in domain or domain
Domain Parameter parameter value (NO_SCALE if not a
numeric domain or parameter)
4.14 Constant Natural Number Scale of the constant INO_SCALE if not a
numeric literal)
421 Column Natural Number Scale of domain of column
5.6 Parameter Natural Number Scale of domain of parameter
5.10 Value Expression Natural Number Scale of expression using SQL rules
(NO_SCALE if not a numeric literal)
SQLnAME 23 Ada Identifier SQL Identifier Unique SQL identifier
54 Cursor Name SQL Identifier Unique SQL cursor name
5.6 Parameter Name SQL Identifier Unique SQL parameter name
5.7 Select Parameter SQL Identifier Unique name of SQL parameter
58 Column Name SQL Identifier Unique name of SQL parameter
SQLsc 5.11 Search Condition SQL Search An SQL search condition
Condition
SQLsq 5.12 Subquery SQL Subquery An SQL subquery
SQLvyg 5.10 Value Expression SQL Value An SQL value expression
Expression
TYPEg,. 59 Into Clause Ada Ider ufier Name of the type of the row record
Insert From Clause parameter
VALUE 414 Static Expression Ada Literal Value assigned to the expression by the

Intermetrics, Inc.

rules of SQL

103

Appendix E - Glossary

Appendix E Glossary

Abstract Interface. A set of Ada package specifications containing the type and procedure
declarations to be used by an Ada application program to access the database.

Abstract Module. A module that specifies the database routines needed by an Ada application.

Assignment context. A value expression appears in an assignment context if the value of that
value expression is to be impliritly or explicitly assigned to an object. The assignment contexts
are: select parameters, constant declarations, values in a VALUES list of an insert statement, set
items in an update statement.

Base domain. A template for defining domains.

Conform. A value expression in an assignment context conforms to a target domain if the rules
of SQL allow the assignment of a value of the data class of the expression to an object of the data
class of the domain.

Conversion method. A method of converting non-null data between objects of the not null-
bearing type, the null-bearing type, and the database type associated with the domain.

Correlation name. See [SQL], Section 5.7.
Cursor. See [SQL], Section 8.3.

Data class. The data class of a value is either character, integer, fixed, float, or enumeration.
The data class of a domain determines which values may be converted, implicitly or explicitly, to
the domain.

Database type. The SQL data type to be used with an object of that domain when it appears in
an SQL parameter declaration. This need not be the same as the type of the data as is stored in
the database.

Definitional module. A module that contains shared definitions: that is, declarations of base
domains, domains, subdomains, constants, records, exceptions, enumerations, and status maps
that are used by other modules.

Domain. The set of values and applicable operations for objects associated with a domain. A
domain is similar to Ada type.

Exposed. The exposed name of a module (table) that appears in a context clause (table ref)
containing an as phrase (correlation name) is the identifier in the associated as phrase (correlation
name); the module name (table name) is hidden. If the as phrase (correlation name) is not
present, the exposed name is that module's (table's) name. The exposed name of a table or
module is the name by which that table or module is referenced.

Extended. A table, view, module, procedure, cursor, or cursor procedure that includes some
nonstandard operation or feature.

Hidden. See exposed.

Module. A definitional module, a schema module, or an abstract module.

Intermetrics, Inc. 105

SAMeDL Language Reference Manual

Not null type. The Ada type associated with objects of a domain that may not take a null value.
Null type. The Ada type associated with objects of a domain that may take a null value.

Null value. SQL's means of recording missing information. A null value in a column indicates
that nothing is known about the value that should occupy the column.

Options. The aspects of the base domain that are essential to the declaration of domains based
upon the base domain. In particular they define the base domain's null- and not null-bearing type
name, data class, database type, and conversion methods.

Patterns. A template used to create the Ada constructs that implement the Ada semantics of a
domain, subdomain, or derived domain declaration.

Row record. The Ada record associated with procedures that contain either a fetch, select, or
insert statement. It is used to transmit the database data to or from the client program.

Row record type. The Ada type of the row record.

SAME. SQL Ada Module Extensions.

SAMeDL. SQL Ada Module Description Language.

Schema module. The SAMeDL notion that corresponds to the SQL SCHEMA.

SQL. Structured Query Language.

SQLCODE. See [SQLI, Section 7.3.

Standard Map. The Standard Map is a status map defined in SAMeDL_Standard that has the
form "status Standard_Map named Is_Found uses boolean is (0 => true, 100 => false);".

Standard_Map is the status map for fetch statements that appear in cursor declarations by default.

Standard post processing. The processing that occurs after the execution of an SQL procedure
but before control is returned to the calling application.

Static expression. A value expression that can be evaluated at compile time (i.e., all the
associated leaves consist solely of literals, constants, or domain parameter references).

Status map. A partial function that associates an enumeration literal or a raise statement with
each specified list or range of SQLCODE values. Status maps are used within the abstract
module to uniformly process the status data for all procedures.

Target domain. The domain of the object to which an assignment is being made in an
assignment context.

Universal constant. A constant whose declaration does not contain a domain reference.

Value expression. A value expression differs from an SQL value expression in that (1) an
operand may be a reference to a constant or a domain parameter, and (2) SAMeDL value
expressions are strongly typed.

106 Intermetrics. Inc.

Appendix F - Syntax Summary

Appendix F Syntax Summary

This appendix provides a summary of the syntax for SAMeDL. Productions are ordered
alphabetically by left-hand nonterminal name. The section number indicates the section where
the production is given.

[5.1]
abstract_module ::= [context]
[extended]
abstract module Ada_identifier_1 Is
authorization schema_reference
{ definition }
{ procedure_or_cursor }
end [Ada_identifier_2] ;
[5.10]
all_set_function ::= [avg | max | min | sum] (| all] value_expression)
[3.2]
as_phrase ::= as Ada_identifier .
[4.1.3]
bas_dom_ref ::= dom_ref | base_domain_reference
[4.1.1]
base_domain_declaration ::= [extended] base domain Ada_identitier_1
[(base_domain_parameter _list)]
patterns
options
end [Ada_identifier_2] ;
[4.11.1]
base_domain_parameter ::= Ada_identifier : data_class [:= static_expression] |
map := pos |
map := image
[4.1.1]
base_domain_parameter_list ::= base_domain_parameter { ; base_domain_parameter)
[3.4]
base_domain_reference ::= [module_reference .] Ada_identifier
[5.11.2]
between_predicate ::= value_expression [not] between value_expression and value_expression
[5.11]

boolean_factor ::= [not] boolean_primary

{5.11]
boolean_primary ::= predicate | (search_condition)

[5.11]
boolean_term ::= boolean_factor | boolean_term and boolean_factor

Intermetrics, Inc. 107

SAMeDL Language Reference Manual

[4.21]
check_constraint_definition ::= check (search_condition)

[55]
close_statement ::= close [Ada_identifier)

[4.21]

column_constraint ::= not null SQL_unique_specification |
SQL_reference_specification
check (search_condition)

[42.1]
column_definition ::= SQL_column_name [SQL_data_type]
[SQL_default_clause]
[column_constraint] : domain_reference

[34]

column_name ::= SQL_identifier

[34]

column_reference = [table_reference .] column_name

(53]

commit_statement ::= commit work

[5111]

comp_op:i==|<>|<|>|e=]|>=

[6.11.1]

comparison_predicate ::= value_expression comp_op val_or_subquery

[3.1]

compilation_unit ::= module { module }

[4.1.5]

component ::= component_name [dblength [named_phrase]]

[41.5]

component_declaration ::= component { , component } : domain_reference [not null] ;
[4.15]

component_declarations ::= component_declaration { component_declaration }
[4.15]

component_name ::= Ada_identifier

[4.14]
constant_declaration ::= constant Ada _identifier | : domain reference]
is static_expression ;

[3.4]
constant_reference ::= [module_reference .] Ada_identifier

[3.2]
context ::= context_clause { context_clause }

108 Intermetrics, Inc.

Appendix F - Syntax Summary

[3.2]
context_clause ::= with_clause | with_schema_clause | use_clause

[4.1.1.3]
converter ::= function pattern_list |
procedure pattern_list |

type mark
[3.3]
correlation_name ::= SQL_identifier
{54]

cursor_declaration ::= [extended] cursor Ada_identifier_1
[input_parameter_list]
tor

query
[SQL_order_by_clause]

f Is cursor_procedures
end [Ada_identitier_2] ;]

[55] T
cursor_delete_statement ::= delete from tabie_name
[where current of Ada_identifier]
[3.4]
cursor_proc_reference ::= [cursor_reference . } Ada_identitier
[565]
cursor_procedure ::= [extended] procedure Ada_identifier_1
[input_parameter_list]
cursor_statement
[status_clause]
[55]
cursor_procedures ::= cursor_procedure { cursor_procedure)
[3.4])
cursor_reference ::= [module_reference .] Ada_identifier
[55]
cursor_statement ::= open_statement |
fetch_statement |
close_statement |
cursor_update_statement |
cursor_delete_statement |
extended_cursor_statement
[55]

cursor_update_statement ::= update table_name
set set_item { , set_item]
[where current of Ada_identifier]

Intermetrics, Inc.

109

SAMeDL Language Reference Manual

[4.1.1.1]
data_class ::= Integer |
character |
fixed |
float |
enumeration
[4.13]
database_mapping ::= enumeration_association_list | pos | image
[41.1.3]
dbms_type = int |
integer |
smallint |
real |
double precision |
char |
character |
implementation defined
[4.1]
definition ::= base_domain_declaration |
domain_declaration |
subdomain_declaration |
constant_declaration |
record_declaration |
enumeration_declaration |
exception_declaration |
status_map_declaration
[4.1]
definitional_module ::= { context]
© [extended]
definition module Ada_identifier_1 Is
{ definition } .
end [Ada_identifier 2] ;
[53]
delete_statement ;.= delete from table_name
[where search_condition]
[4.1.1.2]
derived_domain_pattern ::= derived domain pattern is pattern_list
end pattern ;
[5.10]
distinct_set_function ::= [avg | max | min | sum | count] { distinct column_reference)
[4.1.3] '
dom_ref ::= domain_reference | subdomain_reference
[5.10]
domain_conversion ::= domain_reference (value_expression)
[4.1.3]

domain_declaration ::= domain Ada_identifier is new bas_dom_ref [not null]
[(parameter_association_list)] ;

110 Intermetrics. Inc.

A

Appendix F - Syntax Summary

[3.4]
domain_parameter_reference ::= domain_reference.Ada_identifier
[4.1.1.2]
domain_pattern ::= domain pattern is pattern_list
end pattern ;
[3.4]
domain_reference ::= [module_reference .] Ada_identifier
[4.1.3]
enumeration association ::= enumeration_literal => database_literal
[413] - .
enumeration_association_list ::= (enumeration_association { , enumeration_association })
[4.16]
enumeration_declaration ::= enumeration Ada_identifier_1 Is (enumeration_literal_list) ;
[4.16]
enumeration_literal_list::= enumeration_literal { , enumeration_literal }
[3.4]
enumeration_literal_reference ::= [module_reference .] Ada_identitier
[34]
enumeration_reference ::= [module_reterence .] Ada_identifier
[5.114])]
escape_clause ::= escape value_spec
(4.1.7]
exception_declaration ::= exception Ada_identifier ;
[3.4]
exception_reference ::= [module_reference .] Ada_identifier
[5.11.7]
exists_predicate ::= exists subquery °
[3.7]
extended_cursor_statement ::= implementation defined
[3.7]
extended_query_expression ::= implementation defined
[3.7]
extended_query_specification ::= implementation defined
[3.7]
extended_schema_element ::= implementation defined
[3.7]
extended_statement ::= implementation defined
[3.7]

extended_table_element ::= implementation defined

Intermetrics, Inc. 111

SAMeDL Language Reference Manual

[5.10]

factor ::=[+ | -] primary

[55]

fetch_statement ::= fetch [Ada_identifier t] [into_clause]

[33]

from_clause ::= from table_ref { , table_ref }

[4.11.3]

fundamental ::= for not null type name use pattem_list ; |
for null type name use pattern_list ; |
for data class use data_class ; |
for dbms type use dbms_type [pattern_list] ; |
for conversion from type to type use converter ;

[5.11.3]

in_predicate ::= value_expression [not] in subquery_or_value_spec_list

[56]

input_parameter ::= Ada_identifier_1 [named_phrase] :
[in][out] domain_reference [not null]

[56]
input_parameter_list .:= (parameter { ; parameter })

[3.4]
input_reference ::= [procedure_reference .] Ada_identifier |
[cursor_proc_reference . | Ada_identifier

[58]

insert_column_list ::= insert_column_specification { , insert_column_specification }
[58]

insert_column_specification ::= column_name { named_phrase] [not null]

[59]

insert_trom_clause ::= from into_from_body

[53]
insert_statement_query ::= Insen Into table_name [(SQL_insert_column hst)]
query_specification

[53]
insert_statement_vailues ::= insert into table_name [(insert_column_list)]
[insert_from_clause] values [(insert_value_list) |

[5.8]

insert_value ::= null |
constant_reference |
literal |
column_name |
domain_parameter_reference

[58]

insert_value_list ::= insert_value { , insert_vaiue }

112 . Intermetrics, Inc.

:..

Appendix F - Syntax Summary

[5.9]
into_clause ::= into 8

[59]
into_from_body .= Ada_identifier_1 : record_id |
Ada_identifier_1 |

: record_id
[5.11.4]
like_predicate ::= column_reference [not | like pattern [escape_clause]
[3.1]
module ::= definitional_module | schema_module | abstract_module
[3.2]
module_name ::= Ada_identifier
[34]
module_reference ::= Ada_identifier
[4.15] .
named_phrase ::= named Ada_identifier
[5.11.5]
nuil_predicate ::= column_reterence Is[not] null
[5.5]

open_statement ::= open [Ada_identifier]

[4.1.1.3]

option ::= fundamental |
tor word_list use pattern_list ; |
for word_list use predefined ;

[4.1.1.3]
options ::= { options }
[4.1.3]
parameter_association ::= Ada_identifier => static_expression |
map => database_mapping |
enumeration => enumeration_reference |
scale => static_expression]
length => static_expression
[4.1.3] .
parameter_association_list ::= parameter_association { , parameter_association }
[4.1.1.2]
pattern ::= domain_pattern |
subdomain_pattern |
derived_domain_pattem
[4.1.1.2]

pattern_element ::= character_literal

[41.1.2]
pattern_list ::= pattern_element { pattern_element }

Intermetrics, Inc.

113

SAMeDL Language Reference Manual

[5.114]

pattern_string ::= value_spec

[4.1.1.2]

patterns ::= { pattem }

[5.11]

predicate ::= comparison_predicate |
between_predicate |
in_predicate |
like_predicate]
null_predicate |
quantified_predicate |
exists_predicate

[5.10]

primary ::= literal
constant_reference
domain_parameter_reference
column_reference
input_reference
set_function_specitication
domain_conversion
(value_expression)

[5.2]
procedure_declaration ::= [extended]
procedure Ada_identifier_1
[input_parameter_list |
is

statement

[status_clause]
[5.1]
procedure_or_cursor ::= cursor_declaration | procedure_declaration
[34]
procedure_reference ::= [module_reference .] Ada_identifier
[5.116] '
quantified_predicate ::= value_expression comp_op quantifier subquery
[5.11.6]
quantifier ::= all | some | any
[54] '
query ;.= query_expression | extended_query_expression
[54]
query_expression ;= query_term |

query_expression union [all | query_term

[4.2.2]

query_spec = query_specification | extended_query_specification

114 Intermetrics, Inc.

Y

Appendix F - Syntax Summary

[54]
query_specification ::= select [distinct | all] select_list
from_clause
[where search_condition]
[SQL_group_by_clause]
[having search_condition]
[54]

query_term ;= query_specification |
(query_expression)

[4.15]
record_declaration ::= record Ada_identifier_1 [named_phrase] Is
component_declarations
end [Ada_identitier_2] ;

[59]
record_id ::= new Ada_identifier_2 |
record_reterence

[34] -

record_reference ::= [module_reference .] Ada_identifier

[5.12]

" result_expression ::= value_expression | *

[53]

roliback_statement ::= roliback work

[4.2]

schema_element ::= table_definition |
view_definition |
SQL_privilege_definition |
extended_schema_element

[4.2]

schema_module ::= [context]
[extended]
schema module SQL_identifier_1Is

{ schema_element }

end [SQL_identifier_2];

(3.2]

schema_name ::= SQL_identifier

[3.3])

schema_ref ::= schema_name | Ada_identifier

[3.4]

schema_reference ::= schema_name | Ada_identifier

[5.11)]

search_condition ::= boolean_term | search_condition or boolean_term

[5.7]

select_list ::= * | select_parameter { , select_parameter }

Intermetrics, Inc.

115

SAMeDL Language Reference Manual

[57]
select_parameter ::= value_expression [named_phrase] [not null]
[dblength [named_phrase]]

[53]
select_statement ::= select [distinct | all] select_list
[into_clause]
from_clause
[where search_condition]
{ SQL_group_by_clause]
[having search_condition]
[{5.10]

set_function_specification ;== count(*) |
distinct_set_function |
all_set_function

[53]

set_item ::= column_reference = update_value

[4.2.1]

SQL_default_clause ::= (see [SQL] 6.4)

[53]

SQL_group_by_clause ::= group by column_reference {, column_reference }
[5.3]

SQL _insert_column_list ::= column_name { , column_name }

[54]

SQL_order_by_clause ::= order by SQL_sort_specification { , SQL_sort_specitication }
[4.2]

SQL_privilege_definition ;.= (see [SQL] 6.10)

[4.2.1]

SQL_reference_specification ::= (see [SQL] 6.7)

[4.2.1]

SQL_referential_constraint_definition ::= (see [SQL] 6.7)

[54]

SQL_sort_specification ::= Unsigned_integer_literal [asc | desc] |
column_reference [asc | desc]

[4.2.1]

SQL_unique_constraint_definition ::= (see [SQL] 6.6)

[4.21]

SQL_unique_specification ::= (see [SQL] 6.6)

[4.1.8]

sqlcode_assignment ::= static_expresslon_list => enumeration_literal |

static_expression_list => railse exception_reference

116 Intermetrics, Inc.

Appendix F - Syntax Summary

[5.2]
statement ::= commit_statement |
delete_statement]
insert_statement_values |
insert_statement_query |
rollback_statement |
select_statement |
update_statement |
extended_statement
[4.14]
static_expression ::= value_expression
[4.1.8]
static_expression_list ::= static_expression { , static_expression } |
static_expression .. static_ expression
[5.13]
status_clause ::= status status_reference [named_phrase]
[4.1.8]
status_map_declaration ::= status Ada_identifier_1
{ named_phrase]
[uses target_enumeration]
Is (sqlcode_assignment { , sqlcode_assignment) ;
[34]

status_reference ::= [module_reference . | Ada_identifier

[4.1.3]
subdomain_declaration ::= subdomain Ada_identifier is dom_ref [not nuli]
{ (parameter_association_list)] ;

[4.1.1.2]
subdomain_pattern ;.= subdomain pattern is pattern_list
end pattern ;
[34]
subdomain_reference ::= [module_reference . | Ada_identifier
[5.12]
subquery ::= (select [distinct | all] result_expression
from_clause
[where search_condition]
[SQL_group_by_clause]
[having search_condition])
[(5.11.3]
subquery_or_value_spec_list ::= subquery | (value_spec_list)
[4.2.1]
table_constraint_definition ::= SQL_unique_constraint_definition |

SQL_referential_constraint_definition |
check_constraint_definition

Intermetrics, Inc. 117

SAMeDL Language Reference Manual

[4.2.1]
table_definition ::= [extended] table SQL_identifier_1Is
table_element { , table_element }
end [SQL_identifier_2] ;

[4.2.1]

table_element ::= column_definition |
table_constraint_definition |
extended_table_element

(33]
table_name ::= [schema_ref .]| SQL_identifier
[3.3]
table_ref ::= table_name [[as] correlation_name }
[34]
table_reference ::= [schema_reference .] SQL_identifier
[4.1.8]
target_enumeration ::= enumeration_reference | boolean
[5.10]
term = tactor |
term * factor |
term / factor
[41.1.3]
type ::= dbms | not null | null

[53] .
update_statement ::= update table_name
set set_item { , set_item }
[where search_condition]

[{53]

update_value ::= null | value_expression

[{3.2] :

use_clause ::= use module_name { , module_name} ;

[5.11.1]

val_or_subquery ::= value_expression | subquery

[5.10]

value_expression ::== term |
value_expression + term |
value_expression - term

[5.113)]

value_spec ;= input_reference]
static_expression |
user

[511.3] .
value_spec_list ::= value_spec { , value_spec)

118

Intermetrics, Inc.

Appendix F - Syntax Summary

[4.2.2]
view_definition ::= [extended] view SQL_identifier_1 as query_spec
[with check option]
end [SQL_identifier_21];
[3.2]

with_clause ::= with module_name [as_phrase]
{ , module_name [as_phrase] } ;

[3.2]
with_schema_clause ::= with schema schema_name [as_phrase]
{, schema_name [as_phrase]} ;

[4.1.1.3]

word_list ::= context clause |
null value
null_bearing assign |
not_null_bearing assign

) Intermetrics, Inc.

119

Index

Index

A

Abstract interface 4, 45, 46, 51, 52, 64, 65,
66

Abstract module 4, 41

Ada identifier 8

Ada indicator type 31, 43, 51

AdaNAME 30-31, 50, 57-58, 59-60, 61, 67-
71

AdaTYPE 29, 30, 50, 57-58, 59-60, 61

Anonymous type 29

As phrase 11

Assignment context 16

Authorization clause 41

B

Base domain declaration 5, 20-23

Base domain option 5, 20, 22-23

Base domain parameter 5, 20, 21, 22, 25
Base domain pattern 5, 20, 21-22, 25, 27
Between predicate 74

C

Character set 7

Close statement 6, 53-57
Column definition 35-36
Comment 9

Commit statement 46-49
COMPada 38, 43, 44, 50-51, 57
Comparison predicate 74
Compilation unit 4,7, 11
Component declaration 30-32
Concrete interface 4

Concrete module 4

Conform 16-17, 61

Constant declaration 5, 28-30
Context clause 11-12
Correlation name 12

Cursor declaration 4, 6, 49-53
Cursor delete statement 53-57
Cursor update statement 53-57

D

Data class 5, 8-9, 20, 22, 25

Data conversion 23

Data conversions 38-39

Database mapping 21, 24, 26

DATACLASS 9, 23, 25, 28, 36, 57, 67-71,
73,75

Intermetrics, Inc.

DBLengAda 38, 43, 44, 50-51, 57
DBLngNAME 31, 50, 59-60
DBMS type 23, 24
DBMS_TYPE 24, 36, 62

Default mapping 21

Default value 20

Defining location 13

Definitional module 4, 19

Delete statement 46-49

Delimiter 7-8

DOMAIN 25, 29, 36, 57, 61, 67-71,73,75
Domain conversion 5, 67, 72
Domain declaration 5§, 24-28

E

Enumeration association 24, 26

Enumeration declaration 5, 32-33

Enumeration mapping 38

Enumeration parameter 20, 26

Exception 5, 17

Exception declaration 5, 33

Exists predicate 75

Exposed name 11, 12

Expression assignment 25, 26

Extension 3, 5-6, 17, 23, 35, 36, 37, 41, 42,
49, 54

F

Fetch statement 6, 53-57
From clause 12

Full name 16
Fundamental option 22

H
Hidden name 11, 12

|

Identifier 8

Image default mapping 21
In predicate 74

Indicator type 62
INDICname 62

INDICsql 44, 45, 56, 57, 58, 60
Input parameter 45, 57-58
Insert column list 47, 61-63
Insert from clause 47, 63-66
Insert statement 46-49
Insert value list 47, 61-63
Into clause 47, 54, 63-66
Item 12-13

121

SAMeDL Language Reference Manual

L

LENGTH 9, 25, 26, 29, 36, 57, 67-71
Length parameter 21, 26

Lexical element 7-9

Like predicate 74

Literal 8-9

M

Map parameter 20, 23, 26
MODE 42, 43, 44, 55, 58
Module 4, 11

N

Name prefix 14-15

Named phrase 30

NO_DOMAIN 67

NO_LENGTH 67

NO_NAME 67

NO_SCALE 67

Not null type 22, 27

Not-null bearing type not null type names
are the targets of the function
A.A:AdaTYPE

Null predicate 74

Null type 3

Null_Value_Error 38

O
Open statement 6, 53-57
Optional pattern phrase 22

P
Pada 42-44, 54-55
Parameter association 20, 24
Parameter profile 42-44, 54-55
Parent parameter 21
PARMada 42, 44, 55, 56, 58
PARMrow 63 '
PARMsql 44, 45, 56, 57, 58, 60, 62
Pos default mapping 21
Predicate 72-74
Procedure 4

Cursor 53-57

Non-cursor 41-46
Psql 44, 55-56

Q
Quantified predicate 74
Query specification 49

122

R

Rada 31

Record declaration 5, 32

Record declaration. 30

Reference 12-16

Reference location 13

Reserved word 8, 10

Rollback statement 46-49

Row record type 45, 50, 58, 61, 63

S
SAMeDL_Standard 24
SCALE 9, 25, 29, 36, 57, 67-71
Scale parameter 21, 26
Schema module 4, 34-35
Schema ref 12
Scope 12
Search condition 72-74
Select parameter 47-48, 58-60
Select statement 46-49
Select target list 60
Self parameter 21
Separator 7
Set function 66
Set item 48
Simple name 8, 14
SQL identifier 8
SQL_Char 24
SQL_Database_Error 5, 17
SQL_Double_Precision 24
SQL_Enumeration_As_Char 24
SQL_Enumeration_As_Int 24
SQL_Int 24
SQL _privilege_definition 35
SQL_Real 24
SQL_Smallint 24
SQLCODE 5, 17, 33, 44, 55, 56
Sqlcode assignment 33-34
SQLNAME 8, 62
SQLsc 73-74
SQLsq 75
SQLve 71-72
Standard base domain 24
Standard post processing S, 17
Standard_Map 34
Statements

Cursor 53-57

Non-cursor 46-49

Intermetrics, Inc.

~8 a0

Index

Static expression 28-30

Status clause 5, 17, 45, 75-76
Status map 32

Status map declaration 17, 33-34
Status mapping 5

Status parameter 3, 17, 44, 55, 76
Subdomain declaration 24-28

Subquery 75

T .

Table definition 35-36
Table name 12

Table ref 12
TYPErow 63

U .
Universal constant 29
Update statement 46-49
Use clause 11

vV

VALUE 29-30

Value expression 5, 28, 66-72
View definition 36-37
Visible item 12, 16

w
With clause 11
With schema clause 11

Intermetrics, Inc.

123

